522
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Application of high intensity focused ultrasound combined with nanomaterials in anti-tumor therapy

, , , , , , & show all
Article: 2342844 | Received 03 Apr 2023, Accepted 22 Mar 2024, Published online: 24 Apr 2024

References

  • Abdalkader R, Kawakami S, Unga J, et al. (2017). The development of mechanically formed stable nanobubbles intended for sonoporation-mediated gene transfection. Drug Deliv 24:1–16. doi:10.1080/10717544.2016.1250139.
  • Al-Bataineh O, Jenne J, Huber P. (2012). Clinical and future applications of high intensity focused ultrasound in cancer. Cancer Treat Rev 38:346–53. doi:10.1016/j.ctrv.2011.08.004.
  • Allen C, Her S, Jaffray DA. (2017). Radiotherapy for cancer: present and future. Adv Drug Deliv Rev 109:1–2. doi:10.1016/j.addr.2017.01.004.
  • Alphandéry E. (2022). Ultrasound and nanomaterial: an efficient pair to fight cancer. J Nanobiotechnology 20:139. doi:10.1186/s12951-022-01243-w.
  • Anselmo AC, Mitragotri S. (2019). Nanoparticles in the clinic: an update. Bioeng Transl Med 4:e10143. doi:10.1002/btm2.10143.
  • Bachu VS, Kedda J, Suk I, et al. (2021). High-intensity focused ultrasound: a review of mechanisms and clinical applications. Ann Biomed Eng 49:1975–91. doi:10.1007/s10439-021-02833-9.
  • Beik J, Abed Z, Ghadimi-Daresajini A, et al. (2016). Measurements of nanoparticle-enhanced heating from 1MHz ultrasound in solution and in mice bearing CT26 colon tumors. J Therm Biol 62:84–9. doi:10.1016/j.jtherbio.2016.10.007.
  • Beik J, Abed Z, Ghoreishi FS, et al. (2016). Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications. J Control Release 235:205–21. doi:10.1016/j.jconrel.2016.05.062.
  • Bérard C, Desgranges S, Dumas N, et al. (2022). Perfluorocarbon nanodroplets as potential nanocarriers for brain delivery assisted by focused ultrasound-mediated blood-brain barrier disruption. Pharmaceutics 14:1498. doi:10.3390/pharmaceutics14071498.
  • Blum NT, Yildirim A, Chattaraj R, Goodwin AP. (2017). Nanoparticles formed by acoustic destruction of microbubbles and their utilization for imaging and effects on therapy by high intensity focused ultrasound. Theranostics 7:694–702. doi:10.7150/thno.17522.
  • Chan YK, Lu Y, Czanner G, et al. (2017). In vitro experiment to elucidate the mechanism of the ‘soft shell technique’ for preventing subretinal migration of perfluoro-octane. Br J Ophthalmol 101:389–94. doi:10.1136/bjophthalmol-2016-309856.
  • Chen J, Nan Z, Zhao Y, et al. (2021). Enhanced HIFU theranostics with dual-frequency-ring focused ultrasound and activatable perfluoropentane-loaded polymer nanoparticles. Micromachines 12:1324. doi:10.3390/mi12111324.
  • Chen Z, Niu M, Chen G, et al. (2018). Oxygen production of modified core-shell CuO@ZrO(2) nanocomposites by microwave radiation to alleviate cancer hypoxia for enhanced chemo-microwave thermal therapy. ACS Nano 12:12721–32. doi:10.1021/acsnano.8b07749.
  • Choi Y, Han H, Jeon S, et al. (2020). Deep tumor penetration of doxorubicin-loaded glycol chitosan nanoparticles using high-intensity focused ultrasound. Pharmaceutics 12:974. doi:10.3390/pharmaceutics12100974.
  • Cohen JL, Weiner SF, Pozner JN, et al. (2016). Multi-center pilot study to evaluate the safety profile of high energy fractionated radiofrequency with insulated microneedles to multiple levels of the dermis. J Drugs Dermatol 15:1308–12.
  • Cranston D, Leslie T, Ter Haar G. (2021). A review of high-intensity focused ultrasound in urology. Cancers 13:5696. doi:10.3390/cancers13225696.
  • Dai H, Chen F, Yan S, et al. (2017). In vitro and in vivo investigation of high-intensity focused ultrasound (HIFU) hat-type ablation mode. Med Sci Monit 23:3373–82. doi:10.12659/msm.902528.
  • Du Y, Lin L, Zhang Z, et al. (2022). Drug-loaded nanoparticles conjugated with genetically engineered bacteria for cancer therapy. Biochem Biophys Res Commun 606:29–34. doi:10.1016/j.bbrc.2022.03.049.
  • Dubinsky TJ, Cuevas C, Dighe MK, et al. (2008). High-intensity focused ultrasound: current potential and oncologic applications. AJR Am J Roentgenol 190:191–9. doi:10.2214/AJR.07.2671.
  • Exner AA, Kolios MC. (2021). Bursting microbubbles: how nanobubble contrast agents can enable the future of medical ultrasound molecular imaging and image-guided therapy. Curr Opin Colloid Interface Sci 54:101463. doi:10.1016/j.cocis.2021.101463.
  • Feng G, Hao L, Xu C, et al. (2017). High-intensity focused ultrasound-triggered nanoscale bubble-generating liposomes for efficient and safe tumor ablation under photoacoustic imaging monitoring. Int J Nanomed 12:4647–59. doi:10.2147/IJN.S135391.
  • Feril LB, Fernan RL, Tachibana K. (2021). High-intensity focused ultrasound in the treatment of breast cancer. Curr Med Chem 28:5179–88. doi:10.2174/0929867327666201111143206.
  • Fernández-Ugidos P, Barge-Caballero E, Gómez-López R, et al. (2019). In-hospital postoperative infection after heart transplantation: risk factors and development of a novel predictive score. Transpl Infect Dis 21:e13104. doi: 10.1111/tid.13104.
  • Gao H, Wang Z, Tan M, et al. (2022). pH-responsive nanoparticles for enhanced antitumor activity by high-intensity focused ultrasound therapy combined with sonodynamic therapy. Int J Nanomed 17:333–50. doi:10.2147/IJN.S336632.
  • Gatto C, Ruzza P, Giurgola L, et al. (2023). Comparison of perfluorocarbon liquids cytotoxicity tests: direct contact versus the test on liquid extracts. ACS Omega 8:365–72. doi:10.1021/acsomega.2c04697.
  • Grüll H, Langereis S. (2012). Hyperthermia-triggered drug delivery from temperature-sensitive liposomes using MRI-guided high intensity focused ultrasound. J Control Release 161:317–27. doi:10.1016/j.jconrel.2012.04.041.
  • Guan Q, Wang C, Wu D, et al. (2019). Cerasome-based gold-nanoshell encapsulating L-menthol for ultrasound contrast imaging and photothermal therapy of cancer. Nanotechnology 30:015101. doi:10.1088/1361-6528/aae6aa.
  • Han H, Lee H, Kim K, Kim H. (2017). Effect of high intensity focused ultrasound (HIFU) in conjunction with a nanomedicines-microbubble complex for enhanced drug delivery. J Control Release 266:75–86. doi:10.1016/j.jconrel.2017.09.022.
  • Hernot S, Klibanov AL. (2008). Microbubbles in ultrasound-triggered drug and gene delivery. Adv Drug Deliv Rev 60:1153–66. doi:10.1016/j.addr.2008.03.005.
  • Hill CR, ter Haar GR. (1995). Review article: high intensity focused ultrasound–potential for cancer treatment. Br J Radiol 68:1296–303. doi:10.1259/0007-1285-68-816-1296.
  • Hu Y, Wang X, Zhao P, et al. (2020). Nanozyme-catalyzed oxygen release from calcium peroxide nanoparticles for accelerated hypoxia relief and image-guided super-efficient photodynamic therapy. Biomater Sci 8:2931–8. doi:10.1039/d0bm00187b.
  • Huang HY, Hu SH, Hung SY, et al. (2013). SPIO nanoparticle-stabilized PAA-F127 thermosensitive nanobubbles with MR/US dual-modality imaging and HIFU-triggered drug release for magnetically guided in vivo tumor therapy. J Control Release 172:118–27. doi:10.1016/j.jconrel.2013.07.029.
  • Ishijima A, Tanaka J, Azuma T, et al. (2016). The lifetime evaluation of vapourised phase-change nano-droplets. Ultrasonics 69:97–105. doi:10.1016/j.ultras.2016.04.002.
  • Ji G, Yang J, Chen J. (2014). Preparation of novel curcumin-loaded multifunctional nanodroplets for combining ultrasonic development and targeted chemotherapy. Int J Pharm 466:314–20. doi:10.1016/j.ijpharm.2014.03.030.
  • Jiang BL, Gao X, Xiong J, et al. (2020). Experimental study on synergistic effect of HIFU treatment of tumors using Bifidobacterium bound with cationic phase-change nanoparticles. Eur Rev Med Pharmacol Sci 24:5714–25. doi: 10.26355/eurrev_202005_21363.
  • Jiang F, Wang L, Tang Y, et al. (2022). US/MR bimodal imaging-guided bio-targeting synergistic agent for tumor therapy. Int J Nanomed 17:2943–60. doi:10.2147/IJN.S363645.
  • Jiang Q, Qiao B, Lin X, et al. (2022). A hydrogen peroxide economizer for on-demand oxygen production-assisted robust sonodynamic immunotherapy. Theranostics 12:59–75. doi:10.7150/thno.64862.
  • Khokhlova VA, Fowlkes JB, Roberts WW, et al. (2015). Histotripsy methods in mechanical disintegration of tissue: towards clinical applications. Int J Hyperthermia 31:145–62. doi:10.3109/02656736.2015.1007538.
  • Kim H, Kang J, Chang JH. (2014). Thermal therapeutic method for selective treatment of deep-lying tissue by combining laser and high-intensity focused ultrasound energy. Opt Lett 39:2806–9. doi:10.1364/OL.39.002806.
  • Krafft MP, Riess JG. (2007). Perfluorocarbons: life sciences and biomedical uses - dedicated to the memory of Professor Guy Ourisson, a true RENAISSANCE man. J Polym Sci A Polym Chem 45:1185–98. doi:10.1002/pola.21937.
  • Kuai X, Zhu Y, Yuan Z, et al. (2022). Perfluorooctyl bromide nanoemulsions holding MnO(2) nanoparticles with dual-modality imaging and glutathione depletion enhanced HIFU-eliciting tumor immunogenic cell death. Acta Pharm Sin B 12:967–81. doi:10.1016/j.apsb.2021.07.025.
  • Li H, Gascó C, Delalande A, et al. (2020). Periodic mesoporous organosilica nanoparticles with BOC group, towards HIFU responsive agents. Molecules 25:974. doi:10.3390/molecules25040974.
  • Li Q, Zhang J, Li J, et al. (2021). Glutathione-activated NO-/ROS-generation nanoparticles to modulate the tumor hypoxic microenvironment for enhancing the effect of HIFU-combined chemotherapy. ACS Appl Mater Interfaces 13:26808–23. doi:10.1021/acsami.1c07494.
  • Li W, Hou W, Guo X, et al. (2018). Temperature-controlled, phase-transition ultrasound imaging-guided photothermal-chemotherapy triggered by NIR light. Theranostics 8:3059–73. doi:10.7150/thno.23885.
  • Li Y, Hao L, Liu F, et al. (2019). Cell penetrating peptide-modified nanoparticles for tumor targeted imaging and synergistic effect of sonodynamic/HIFU therapy. Int J Nanomed 14:5875–94. doi:10.2147/IJN.S212184.
  • Liu S, Yang R, Yin N, Faiola F. (2020). Effects of per- and poly-fluorinated alkyl substances on pancreatic and endocrine differentiation of human pluripotent stem cells. Chemosphere 254:126709. doi:10.1016/j.chemosphere.2020.126709.
  • Liu T, Zhang N, Wang Z, et al. (2017). Endogenous catalytic generation of O(2) bubbles for in situ ultrasound-guided high intensity focused ultrasound ablation. ACS Nano 11:9093–102. doi:10.1021/acsnano.7b03772.
  • Luo Z, Jin K, Pang Q, et al. (2017). On-demand drug release from dual-targeting small nanoparticles triggered by high-intensity focused ultrasound enhanced glioblastoma-targeting therapy. ACS Appl Mater Interfaces 9:31612–25. doi:10.1021/acsami.7b10866.
  • Ma M, Xu H, Chen H, et al. (2014). A drug-perfluorocarbon nanoemulsion with an ultrathin silica coating for the synergistic effect of chemotherapy and ablation by high-intensity focused ultrasound. Adv Mater 26:7378–85. doi:10.1002/adma.201402969.
  • Ma X, Yao M, Shi J, et al. (2020). High intensity focused ultrasound-responsive and ultrastable cerasomal perfluorocarbon nanodroplets for alleviating tumor multidrug resistance and epithelial-mesenchymal transition. ACS Nano 14:15904–18. doi:10.1021/acsnano.0c07287.
  • Mai X, Chang Y, You Y, et al. (2021). Designing intelligent nano-bomb with on-demand site-specific drug burst release to synergize with high-intensity focused ultrasound cancer ablation. J Control Release 331:270–81. doi:10.1016/j.jconrel.2020.09.051.
  • Maloney E, Hwang JH. (2015). Emerging HIFU applications in cancer therapy. Int J Hyperthermia 31:302–9. doi:10.3109/02656736.2014.969789.
  • Maples D, McLean K, Sahoo K, et al. (2015). Synthesis and characterisation of ultrasound imageable heat-sensitive liposomes for HIFU therapy. Int J Hyperthermia 31:674–85. doi: 10.3109/02656736.2015.1057622.
  • Mullick Chowdhury S, Lee T, Willmann JK. (2017). Ultrasound-guided drug delivery in cancer. Ultrasonography 36:171–84. doi:10.14366/usg.17021.
  • Murphy DA, Cheng H, Yang T, et al. (2021). Reversing hypoxia with PLGA-encapsulated manganese dioxide nanoparticles improves natural killer cell response to tumor spheroids. Mol Pharm 18:2935–46. doi:10.1021/acs.molpharmaceut.1c00085.
  • Napoli A, Alfieri G, Scipione R, et al. (2020). High-intensity focused ultrasound for prostate cancer. Expert Rev Med Devices 17:427–33. doi:10.1080/17434440.2020.1755258.
  • Nicolson F, Ali A, Kircher MF, Pal S. (2020). DNA nanostructures and DNA-functionalized nanoparticles for cancer theranostics. Adv Sci 7:2001669. doi: 10.1002/advs.202001669.
  • Panzone J, Byler T, Bratslavsky G, Goldberg H. (2022). Applications of focused ultrasound in the treatment of genitourinary cancers. Cancers 14:1536. doi:10.3390/cancers14061536.
  • Park W, Na K. (2015). Advances in the synthesis and application of nanoparticles for drug delivery. Wiley Interdiscip Rev Nanomed Nanobiotechnol 7:494–508. doi:10.1002/wnan.1325.
  • Pastor JC, Coco RM, Fernandez-Bueno I, et al. (2017). Acute retinal damage after using a toxic perfluoro-octane for vitreo-retinal surgery. Retina 37:1140–51. doi:10.1097/IAE.0000000000001680.
  • Phillips LC, Puett C, Sheeran PS, et al. (2013). Phase-shift perfluorocarbon agents enhance high intensity focused ultrasound thermal delivery with reduced near-field heating. J Acoust Soc Am 134:1473–82. doi:10.1121/1.4812866.
  • Prabhakar U, Maeda H, Jain RK, et al. (2013). Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology. Cancer Res 73:2412–7. doi:10.1158/0008-5472.CAN-12-4561.
  • Przystupski D, Ussowicz M. (2022). Landscape of cellular bioeffects triggered by ultrasound-induced sonoporation. Int J Mol Sci 23:11222. doi:10.3390/ijms231911222.
  • Rapoport N. (2012). Phase-shift, stimuli-responsive perfluorocarbon nanodroplets for drug delivery to cancer. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4:492–510. doi:10.1002/wnan.1176.
  • Rapoport N, Gao Z, Kennedy A. (2007). Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy. J Natl Cancer Inst 99:1095–106. doi:10.1093/jnci/djm043.
  • Ren SZ, Zhu XH, Wang B, et al. (2021). A versatile nanoplatform based on multivariate porphyrinic metal-organic frameworks for catalytic cascade-enhanced photodynamic therapy. J Mater Chem B 9:4678–89. doi:10.1039/d0tb02652b.
  • Ren X, Chen D, Wang Y, et al. (2022). Nanozymes-recent development and biomedical applications. J Nanobiotechnol 20:92. doi:10.1186/s12951-022-01295-y.
  • Roberts WW, Hall TL, Ives K, et al. (2006). Pulsed cavitational ultrasound: a noninvasive technology for controlled tissue ablation (histotripsy) in the rabbit kidney. J Urol 175:734–8. doi:10.1016/S0022-5347(05)00141-2.
  • Sadeghi-Goughari M, Jeon S, Kwon HJ. (2020). Magnetic nanoparticles-enhanced focused ultrasound heating: size effect, mechanism, and performance analysis. Nanotechnology 31:245101. doi:10.1088/1361-6528/ab7cea.
  • Schutt EG, Klein DH, Mattrey RM, Riess JG. (2003). Injectable microbubbles as contrast agents for diagnostic ultrasound imaging: the key role of perfluorochemicals. Angew Chem Int Ed Engl 42:3218–35. doi:10.1002/anie.200200550.
  • Sha X, Dai Y, Song X, et al. (2021). The opportunities and challenges of silica nanomaterial for atherosclerosis. Int J Nanomed 16:701–14. doi:10.2147/IJN.S290537.
  • Shen J, Hao J, Chen Y, et al. (2021). Neutrophil-mediated clinical nanodrug for treatment of residual tumor after focused ultrasound ablation. J Nanobiotechnol. 19:345. doi:10.1186/s12951-021-01087-w.
  • Sidhu H, Gautam LK, Capalash N. (2023). Unraveling the molecular mechanism of l-menthol against cervical cancer based on network pharmacology, molecular docking and in vitro analysis. Mol Divers 27:323–40. doi:10.1007/s11030-022-10429-1.
  • Sofuni A, Asai Y, Mukai S, et al. (2022). High-intensity focused ultrasound therapy for pancreatic cancer. J Med Ultrason (2001). doi:10.1007/s10396-022-01208-4.
  • Sokka SD, King R, Hynynen K. (2003). MRI-guided gas bubble enhanced ultrasound heating in in vivo rabbit thigh. Phys Med Biol 48:223–41. doi:10.1088/0031-9155/48/2/306.
  • Song X, Feng L, Liang C, et al. (2016). Ultrasound triggered tumor oxygenation with oxygen-shuttle nanoperfluorocarbon to overcome hypoxia-associated resistance in cancer therapies. Nano Lett 16:6145–53. doi:10.1021/acs.nanolett.6b02365.
  • Srivastava GK, Alonso-Alonso ML, Fernandez-Bueno I, et al. (2018). Comparison between direct contact and extract exposure methods for PFO cytotoxicity evaluation. Sci Rep 8:1425. doi:10.1038/s41598-018-19428-5.
  • Srivastava GK, Kalaiselvan V, Andrés-Iglesias C, et al. (2022). Acute intraocular toxicity caused by perfluorocarbon liquids: safety control systems of medical devices. Graefes Arch Clin Exp Ophthalmol 260:2103–10. doi:10.1007/s00417-022-05578-w.
  • Strohm E, Rui M, Gorelikov I, et al. (2011). Vaporization of perfluorocarbon droplets using optical irradiation. Biomed Opt Express 2:1432–42. doi:10.1364/BOE.2.001432.
  • Sun L, Gao W, Wang J, et al. (2023). A new sono-chemo sensitizer overcoming tumor hypoxia for augmented sono/chemo-dynamic therapy and robust immune-activating response. Small 19:e2206078. doi:10.1002/smll.202206078.
  • Sun T, Zhang Y, Zhang C, et al. (2020). Cyanobacteria-based bio-oxygen pump promoting hypoxia-resistant photodynamic therapy. Front Bioeng Biotechnol 8:237. doi:10.3389/fbioe.2020.00237.
  • Tang H, Guo Y, Peng L, et al. (2018). In vivo targeted, responsive, and synergistic cancer nanotheranostics by magnetic resonance imaging-guided synergistic high-intensity focused ultrasound ablation and chemotherapy. ACS Appl Mater Interfaces 10:15428–41. doi:10.1021/acsami.8b01967.
  • Tang R, He H, Lin X, et al. (2023). Novel combination strategy of high intensity focused ultrasound (HIFU) and checkpoint blockade boosted by bioinspired and oxygen-supplied nanoprobe for multimodal imaging-guided cancer therapy. J Immunother Cancer 11:e006226. doi:10.1136/jitc-2022-006226.
  • Tharkar P, Varanasi R, Wong WSF, et al. (2019). Nano-enhanced drug delivery and therapeutic ultrasound for cancer treatment and beyond. Front Bioeng Biotechnol 7:324. doi:10.3389/fbioe.2019.00324.
  • Tsang SH, Ma KW, She WH, et al. (2021). High-intensity focused ultrasound ablation of liver tumors in difficult locations. Int J Hyperthermia 38:56–64. doi:10.1080/02656736.2021.1933217.
  • Wang B, Zhou L, Guo Y, et al. (2022). Cyanobacteria-based self-oxygenated photodynamic therapy for anaerobic infection treatment and tissue repair. Bioact Mater 12:314–26. doi:10.1016/j.bioactmat.2021.10.032.
  • Wang C, Li Z, Bai J. (2022). Bubble-assisted HIFU ablation enabled by calcium peroxide. J Mater Chem B 10:4442–51. doi:10.1039/d2tb00587e.
  • Wang D, Jiang F, Wang L, et al. (2021). Polyethylenimine (PEI)-modified poly (lactic-co-glycolic) acid (PLGA) nanoparticles conjugated with tumor-homing bacteria facilitate high intensity focused ultrasound-mediated tumor ablation. Biochem Biophys Res Commun 571:104–9. doi:10.1016/j.bbrc.2021.07.061.
  • Wang P, Min D, Chen G, et al. (2021). Inorganic nanozymes: prospects for disease treatments and detection applications. Front Chem 9:773285. doi:10.3389/fchem.2021.773285.
  • Wang S, Zhao J, Hu F, et al. (2016). Phase-changeable and bubble-releasing implants for highly efficient HIFU-responsive tumor surgery and chemotherapy. J Mater Chem B 4:7368–78. doi:10.1039/c6tb01861k.
  • Waxman K. (1986). Perfluorocarbons as blood substitutes. Ann Emerg Med 15:1423–4. doi:10.1016/s0196-0644(86)80933-7.
  • Wen S, Ovais M, Li X, et al. (2022). Tailoring bismuth-based nanoparticles for enhanced radiosensitivity in cancer therapy. Nanoscale 14:8245–54. doi:10.1039/d2nr01500e.
  • Wu H, Zhou H, Zhang W, et al. (2022). Three birds with one stone: co-encapsulation of diclofenac and DL-menthol for realizing enhanced energy deposition, glycolysis inhibition and anti-inflammation in HIFU surgery. J Nanobiotechnol 20:215. doi:10.1186/s12951-022-01437-2.
  • Wu M, Niu X, Zhang R, Ping Xu Z. (2022). Two-dimensional nanomaterials for tumor microenvironment modulation and anticancer therapy. Adv Drug Deliv Rev 187:114360. doi:10.1016/j.addr.2022.114360.
  • Xu Z, Liu HM, Tian H, Yan F. (2020). Real-time imaging tracking of engineered macrophages as ultrasound-triggered cell bombs for cancer treatment. Adv Funct Mater 30:1910304. doi:10.1002/adfm.201910304.
  • Yang H, Jiang F, Ji X, et al. (2021). Genetically engineered bacterial protein nanoparticles for targeted cancer therapy. Int J Nanomed 16:105–17. doi:10.2147/IJN.S292432.
  • Yang H, Jiang F, Zhang L, et al. (2021). Multifunctional l-arginine-based magnetic nanoparticles for multiple-synergistic tumor therapy. Biomater Sci 9:2230–43. doi:10.1039/d0bm01932a.
  • Yetisgin AA, Cetinel S, Zuvin M, et al. (2020). Therapeutic nanoparticles and their targeted delivery applications. Molecules 25:2193. doi:10.3390/molecules25092193.
  • Yildirim A, Chattaraj R, Blum NT, et al. (2017). Phospholipid capped mesoporous nanoparticles for targeted high intensity focused ultrasound ablation. Adv Healthc Mater 6:10. doi:10.1002/adhm.201700514.
  • You Y, Wang Z, Ran H, et al. (2016). Nanoparticle-enhanced synergistic HIFU ablation and transarterial chemoembolization for efficient cancer therapy. Nanoscale 8:4324–39. doi:10.1039/c5nr08292g.
  • Yu JJ, Lee HA, Kim JH, et al. (2007). Bio-distribution and anti-tumor efficacy of PEG/PLA nano particles loaded doxorubicin. J Drug Target 15:279–84. doi:10.1080/10611860701357235.
  • Yu Q, Huang T, Liu C, et al. (2019). Oxygen self-sufficient NIR-activatable liposomes for tumor hypoxia regulation and photodynamic therapy. Chem Sci 10:9091–8. doi:10.1039/c9sc03161h.
  • Yu Q, Liu K, Su L, et al. (2014). Perfluorocarbon liquid: its application in vitreoretinal surgery and related ocular inflammation. Biomed Res Int 2014:250323–6. doi:10.1155/2014/250323.
  • Zeng Z, Liu JB, Peng CZ. (2022). Phase-changeable nanoparticle-mediated energy conversion promotes highly efficient high-intensity focused ultrasound ablation. Curr Med Chem 29:1369–78. doi:10.2174/0929867328666210708085110.
  • Zhang C, Liu J, Guo H, et al. (2019). Theranostic nanomedicine carrying L-menthol and near-infrared dye for multimodal imaging-guided photothermal therapy of cancer. Adv Healthc Mater 8:e1900409. doi: 10.1002/adhm.201900409.
  • Zhang K, Chen H, Li F, et al. (2014). A continuous tri-phase transition effect for HIFU-mediated intravenous drug delivery. Biomaterials 35:5875–85. doi:10.1016/j.biomaterials.2014.03.043.
  • Zhang X, Zheng Y, Wang Z, et al. (2014). Methotrexate-loaded PLGA nanobubbles for ultrasound imaging and synergistic targeted therapy of residual tumor during HIFU ablation. Biomaterials 35:5148–61. doi:10.1016/j.biomaterials.2014.02.036.
  • Zhang Y, Yong L, Luo Y, et al. (2019). Enhancement of HIFU ablation by sonosensitizer-loading liquid fluorocarbon nanoparticles with pre-targeting in a mouse model. Sci Rep 9:6982. doi:10.1038/s41598-019-43416-y.
  • Zhou Y, Wang Z, Chen Y, et al. (2013). Microbubbles from gas-generating perfluorohexane nanoemulsions for targeted temperature-sensitive ultrasonography and synergistic HIFU ablation of tumors. Adv Mater 25:4123–30. doi:10.1002/adma.201301655.
  • Zhou YF. (2011). High intensity focused ultrasound in clinical tumor ablation. World J Clin Oncol 2:8–27. doi:10.5306/wjco.v2.i1.8.
  • Zhu J, Li Z, Zhang C, et al. (2019). Single enzyme loaded nanoparticles for combinational ultrasound-guided focused ultrasound ablation and hypoxia-relieved chemotherapy. Theranostics 9:8048–60. doi:10.7150/thno.37054.
  • Zhu T, Huang Z, Shu X, et al. (2022). Functional nanomaterials and their potentials in antibacterial treatment of dental caries. Colloids Surf B Biointerfaces 218:112761. doi:10.1016/j.colsurfb.2022.112761.
  • Zi Y, Yang K, He J, et al. (2022). Strategies to enhance drug delivery to solid tumors by harnessing the EPR effects and alternative targeting mechanisms. Adv Drug Deliv Rev. 188:114449. doi: 10.1016/j.addr.2022.114449.