662
Views
34
CrossRef citations to date
0
Altmetric
Original

Acellular Invertebrate Hemoglobins as Model Therapeutic Oxygen Carriers: Unique Redox Potentials

, , , &
Pages 53-67 | Published online: 24 Aug 2009

REFERENCES

  • Lee, R., Neya, K., Svizzero, T.A., Vlahahas, G.T. (1995). Limitations of the efficacy of hemoglobin-based oxygen carrying solutions. J. Appl. Physiol. 78: 236–246.
  • Alayash, A.I., Cashon, R.E. (1995). Hemoglobin and free radicals: Implications for the development of a saf blood substitute. Mol. Med. Today. 1: 122–127.
  • Alayash, A.I. (1999). Hemoglobin-based blood substitutes: Oxygen carriers, pressor agents, or oxidants. Nature Biotechnol. 17: 545–549.
  • Alayash, A.I. (2000). Hemoglobin-based blood substitutes and the hazards of blood radicals. Free Radic. Res. 33: 341–348.
  • D'Agnello, F., Alayash, A.I. (2000). Interactions of hemoglobin with hydrogen peroxide alters thiol levels and course of endothelial cell death. Adv. Drug Deliv. Res. 40: 199–212.
  • Hirsch, R.E., Harrington, J.P. (2000). Blood substitutes: An overview and perspective. Einstein Quart. J. Biol. Med. 17: 113–123.
  • Harrington, J.P., Hirsch, R.E. (2003). XIIIth Intern. Conference on Invertebrate Dioxygen Binding Proteins, Mainz, Germany September,.
  • Dorman, S.C., Kenny, C.F., Miller, L., Hirsch, R.E., Harrington, J.P. (2002). Role of redo potential of hemoglobin-based oxygen cariers on methemoglobin reducton by plasma components. Art. Cells, Blood Subst. and Immob. Biotech. 30: 43–56.
  • Harrington, J.P., Shear, H.L., Hirsch, R.E. (1993). Blood, 589a.
  • Hirsch, R.E., Jelicks, L.A., Wittenberg, B.A., Kaul, D.K., Shear, H.L., Harrington, J.P. (1997). A first evaluation of the high molecular weight polymeric Lumbricus terrestris hemoglobin as an oxygen carrier. Art. Cells, Blood Subst. and Immob. Biotech. 25: 429–444.
  • Kuchumov, A.R., Taveau, J.C., Lamy, J.N., Wall, J.S., Weber, R.E., Vinogradov, S.N. (1999). The role of linkers in the reassembly of the 3.6 Mda hexagonal bilayer hemoglobin from Lumbricus terrestris. J. Mol. Biol. 289: 1361–1374.
  • Green, B.N., Gotoh, T., Suzuki, T., Zal, F., Lallier, F.H., Toulmond, A., Vinogradov, S.N. (2001). Observation of large, non-covalent globin subassemblies in the approximately 3600 kDa hexagonal bilayer hemoglobin by electrospray ionization time-of-flight mass spectrometry. J. Mol. Biol. 309: 553–560.
  • Fushitani, K., Imai, K., Riggs, A.F. (1986). Oxygenation properties of hemoglobin from the earthworm, Lumbricus terrestris. Effects of pH, salt, and temperature. J. Biol. Chem. 261: 8414–8423.
  • Zhu, H., Ownby, D.W., Riggs, C.K., Nolasco, N.J., Stoops, J.K., Riggs, A.F. (1996). Assembly of the gigantic hemoglobin of the earthworm Lumbricus terrestris. Roles of subunit equilibria, non-globin linker chains, and valence of the heme iron. J. Biol. Chem. 271: 30007–30021.
  • Harrington, J.P. (1994). Multimeric Lumbricus hemoglobin stabilization by alkali and alkaline earth cations. Comp. Biochem. Physiol. 109A: 799–803.
  • Chabasse, C., Rousselot, M., Bailly, X., Harnois, T., Zal, F. (2005). Novel dissociation mechanism of a polychaetous annid extracellular hemoglobin. Xth Intern. Symp. on Blood Subst., Providence, RI, p. 55a.
  • Harrington, J.P., Pandolfelli, E., Herskovits, T.T. (1973). Solution studies on heme proteins: Circular dichroism and opical rotation of Lumbricus terrestris and Glycera diranchiata hemoglobin. Biochim. Biophys. Acta. 328: 71–83.
  • Harrington, J.P., Hicks, R. (1994). Spectral analysis of Fe(III)-complex reduction by hemoglobin: Possible mechanisms of interaction. Intern. J. Biochem. 26: 1111–1117.
  • DiIorio, E. (1981). Methods in Enzymology 96: 47–72.
  • Harrington, J.P., Gonzalez, Y., Hirsch, R.E. (2000). Redox concerns in the use of acellular hemoglobin-based oxygen carriers: The role of plasma components. Art. Cells, Blood Subst. and Immob. Biotech. 28: 477–492.
  • Dorman, S.C., Harrington, J.P., Martin, M.S., Johnson, T.V. (2004). Determination of the formal reduction potential of Lumbricus terrestris hemoglobin using thin-layer spectroelectrochemistry. J. Inorg. Biochem. 98: 195–198.
  • Faulkner, K.M., Bonaventura, C., Crumbliss, A.L. (1994). A spectroelectrochemical method for evaluating factors which regulate the redox potential of hemoglobins. Inorg. Chim. Acta. 226: 187–194.
  • Faulkner, K.M., Bonaventura, C., Crumbliss, A.L. (1995). A spectroelectrochemical method for differentiation of steric and electronic effects in hemoglobins and myoglobins. J. Biol. Chem. 270: 13604–13612.
  • Vinogradov, S.N., Lugo, S., Mainwaring, M.G., Kapp, O.H., Crewe, A.V. (1986). Bracelet protein: A quaternary structure proposed for the giant extracellular hemoglobin of Lumbricus terrestris. Proc. Nat. Acad. Sci. USA 83: 8034–8038.
  • Zal, F., Green, B.N., Lallier, F.H., Vinogradov, S.N., Toulmond, A. (1997). Quaternary structure of the extracellular hemoglobin of the lugworm Arenicola marina: A multi-angle-laser-light-scattering and electrospray-ionization-mass-spectrometry analysis. Eur. J. Biochem. 243: 85–92.
  • Fushitani, K., Matsuura, M.S.A., Riggs, A.F. (1988). The amino acid sequences of chains a, b, and c that form the trimer of the extracellular hemoglobin from. J. Biol. Chem. 263: 6502–6517.
  • Yager, T.D., Terwilliger, N.B., Terwilliger, R.C., Schabtach, E., Van Holde, K.E. (1892). Organization and physical properties of the giant extracellular hemoglobin of the clam Astarte castanea. Biochim. Biophys. Acta. 709: 194–203.
  • Terwilliger, N.B. (1992). Adv. Comp. Environ.Physiol. 13: 193–229.
  • Terwilliger, R.C., Terwilliger, N.B., Schabtach, E. (1978). Extracellular hemoglobin of the clam, Cardita borealis: An unusual polymeric hemoglobin. Comp. Biochem. Physiol. 59B: 9–14.
  • Herskovits, T.T., Behrens, C.F., Siuta, P.B, Pandofelli, E.R. (1977). Solvent denaturation of globular proteins: Unfolding by the monalkyl- and dialkyl-substituted formamides and ureas. Biochim. Biophys. Acta. 490: 192–199.
  • Regis, W.C.B., Fattori, J., Santoro, M.M., Jamin, M., Ramos, C.H.I. (2005). Of the differences in stability between horse and sperm whale myoglobins. Arch. Biochem Biophys. 436: 168–177.
  • Kobayashi, S., Harrington, J.P. (2005). Unpublished data.
  • Sampeth, V., Caughey, W.S. (1985). Prooxidant effects of glutathione in aerobic hemoglobin solutions. Superoxide generation from uncoordinated dioxygen. J. Am. Chem. Soc. 107: 4076–4078.
  • Royer, W.E., Strand, K., Van Heel, M., Hendrickson, W.A. (2000). Structural hierarchy in erythrocruorin, the giant respiratory assemblage of annelids. Proc. Nat. Acad. Sci. USA 97: 7107–7111.
  • Strand, K., Knapp, J.E., Bhyravbhatla, B, Royer, W.E. (2004). Crystal structure of the hemoglobin docecamer from Lumbricus terrestris erythrocruorin: Allosteric core of giant annelid respiratory complexes. J. Mol. Biol. 344: 119–134.
  • Hirsch, R.E., Harrington, J.P., Scarlata, S. (1993). The differential effects of carbon monoxide and oxygen on the pressure dissociation of Lumbricus terrestris hemoglobin. Biochim. Biophys. Acta. 1161: 285–290.
  • Harrington, J.P., Friedman, J.M., Hirsch, R.E. (1997). The effect of alkaline earth cations and of ionic strength on the dissociation of earthworm hemoglobin at alkaline pH. Biophys. J. 72(2): A86.
  • Ochiai, T., Weber, R.E. (2002). Effects of Magnesium and calcium on the oxygenation reaction of erythrocruorin from the marine polychaete Arenicola marina and the terrestrial oligochaete Lumbricus terrestris. Zoolog. Sci.>19: 995–1000.
  • Stellwagen, E. (1978). Heme exposure as the determinate of oxidation-reduction potential of heme proteins. Nature 275: 73–74.
  • Chen, Z., Ost, T.W.B., Schelvis, J.P.M. (2004). Phe393 mutants of cytochrome P450 BM3 with modified heme redox potentials have altered heme vinyl and proprionate conformations. Biochemistry 43: 1798–1808.
  • Mao, J., Hauser, K., Gunner, M.R. (2003). How cytochromes with different folds control heme redox potentials. Biochemistry 42: 9829–9840.
  • Bispo, J.A.C., Landini, G.F., Santos, J.L.R., Norberto, D.R., Bonafe, C.F.S. (2005). Tendency for oxidation of annelid hemoglobin at alkaline pH and dissociated states probed by redox titration. Comp. Biochem. Physiol. 141B: 498–504.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.