49
Views
10
CrossRef citations to date
0
Altmetric
Articles

The Role of K+ Channels in Determining Pulmonary Vascular Tone, Oxygen Sensing, Cell Proliferation, and Apoptosis: Implications in Hypoxic Pulmonary Vasoconstriction and Pulmonary Arterial Hypertension

, &
Pages 615-632 | Received 29 Mar 2006, Accepted 02 Jun 2006, Published online: 10 Jul 2009

REFERENCES

  • Amberg G C, Rossow C F, Navedo M F, Santana L F. NFATc3 regulates Kv2.1 expression in arterial smooth muscle. J Biol Chem 2004; 279: 47326–47334, [INFOTRIEVE], [CSA]
  • Archer S, Rich S. Primary pulmonary hypertension: a vascular biology and translational research “work in progress”. Circulation 2000; 102: 2781–2791, [INFOTRIEVE], [CSA]
  • Archer S, Yankovich R, Chesler E, Weir E. Comparative effects of nisoldipine, nifedipine and bepridil on experimental pulmonary hypertension. J Pharmacol Exp Ther 1985; 233: 12–17, [INFOTRIEVE], [CSA]
  • Archer S L, Huang J, Henry T, Peterson D, Weir E K. A redox–based O2 sensor in rat pulmonary vasculature. Circ Res 1993; 73: 1100–1112, [INFOTRIEVE], [CSA]
  • Archer S L, Huang J M, Hampl V, Nelson D P, Shultz P J, Weir E K. Nitric oxide and cGMP cause vasorelaxation by activation of a charybdotoxin–sensitive K channel by cGMP-dependent protein kinase. Proc Natl Acad Sci USA 1994; 91: 7583–7587, [INFOTRIEVE], [CSA], [CROSSREF]
  • Archer S L, Huang J M, Reeve H L, H2mpl V, Tolarova S, Michelakis E, Weir E K. Differential distribution of electrophysiologically distinct myocytes in conduit and resistance arteries determines their response to nitric oxide and hypoxia. Circ Res 1996; 78: 431–442, [INFOTRIEVE], [CSA]
  • Archer S L, London B, Hampl V, Wu X, Nsair A, Puttagunta L, Hashimoto K, Waite R E, Michelakis E D. Impairment of hypoxic pulmonary vasoconstriction in mice lacking the voltage-gated potassium channel Kv1.5. FASEB J 2001; 15: 1801–1803, [INFOTRIEVE], [CSA]
  • Archer S L, Nelson D P, Weir E K. Simultaneous measurement of oxygen radicals and pulmonary vascular reactivity in the isolated rat lung. J Appl Physiol 1989; 67: 1903–1911, [INFOTRIEVE], [CSA]
  • Archer S L, Reeve H L, Michelakis E, Puttagunta L, Waite R, Nelson D P, Dinauer M C, Weir E K. O2 sensing is preserved in mice lacking the gp91 phox subunit of NADPH oxidase. Proc Natl Acad Sci USA 1999; 96: 7944–7949, [INFOTRIEVE], [CSA], [CROSSREF]
  • Archer S L, Souil E, Dinh-Xuan A T, Schremmer B, Mercier J C, El Yaagoubi A, Nguyen-Huu L, Reeve H L, Hampl V. Molecular identification of the role of voltage-gated K+ channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes. J Clin Invest 1998; 101: 2319–2330, [INFOTRIEVE], [CSA]
  • Archer S L, Weir E K, Reeve H L, Michelakis E. Molecular identification of O2 sensors and O2-sensitive potassium channels in the pulmonary circulation. Adv Exp Med Biol 2000; 475: 219–240, [INFOTRIEVE], [CSA]
  • Archer S L, Will J A, Weir E K. Redox status in the control of pulmonary vascular tone. Herz 1986; 11: 127–141, [INFOTRIEVE], [CSA]
  • Archer S L, Wu X C, Thebaud B, Nsair A, Bonnet S, Tyrrell B, McMurtry M S, Hashimoto K, Harry G, Michelakis E D. Preferential expression and function of voltage-gated, O2-sensitive K+ channels in resistance pulmonary arteries explains regional heterogeneity in hypoxic pulmonary vasoconstriction: ionic diversity in smooth muscle cells. Circ Res 2004; 95: 308–318, [INFOTRIEVE], [CSA], [CROSSREF]
  • Bahring R, Milligan C J, Vardanyan V, Engeland B, Young B A, Dannenberg J, Waldschutz R, Edwards J P, Wray D, Pongs O. Coupling of voltage–dependent potassium channel inactivation and oxidoreductase active site of Kvbeta subunits. J Biol Chem 2001; 276: 22923–22929, [INFOTRIEVE], [CSA], [CROSSREF]
  • Bartsch P, Maggiorini M, Ritter M, Noti C, Vock P, Oelz O. Prevention of high-altitude pulmonary edema by nifedipine. N Engl J Med 1991; 325: 1284–1289, [INFOTRIEVE], [CSA]
  • Bindslev L, Jolin A, Hedenstierna G, Baehrendtz S, Santesson J. Hypoxic pulmonary vasoconstriction in the human lung: effect of repeated hypoxic challenges during anesthesia. Anesthesiology 1985; 62: 621–625, [INFOTRIEVE], [CSA], [CROSSREF]
  • Bonnet S, Archer S L, Haromy A, Hashimoto K, Bonnet S A, Michelakis E D. NFAT regulates Kv1.5, a voltage-gated K+ channel which is downregulated in both human and animal pulmonary hypertension. (abstract). Can J Cardiol 2005; 21: 57, [CSA]
  • Bonnet S, Michelakis E D, Porter C J, Andrade-Navarro M A, Thébaud B, Bonnet S N, Haromy A, Harry G, Moudgil R, McMurtry M S, Weir E, Archer S L. An abnormal mitochondrial-HIF-1-Kv channel pathway disrupts oxygen-sensing and triggers pulmonary arterial hypertension (PAH) in fawn-hooded rats: similarities to human PAH. Circulation 2006; 113: 2630–2641, [INFOTRIEVE], [CSA], [CROSSREF]
  • Bortner C D, Cidlowski J A. Absence of volume regulatory mechanisms contributes to the rapid activation of apoptosis in thymocytes. Am J Physiol 1996; 271: C950–C961, [INFOTRIEVE], [CSA]
  • Carlsson A J, Bindslev L, Santesson J, Gottlieb I, Hedenstierna G. Hypoxic pulmonary vasoconstriction in the human lung: the effect of prolonged unilateral hypoxic challenge during anaesthesia. Acta Anaesthesiol Scand 1985; 29: 346–351, [INFOTRIEVE], [CSA]
  • Chandy K G, Gutman G A. Nomenclature for mammalian potassium channel genes. Trends Pharmacol Sci 1993; 14: 434, [INFOTRIEVE], [CSA], [CROSSREF]
  • Chatterjee S, Al-Mehdi A B, Levitan I, Stevens T, Fisher A B. Shear stress increases expression of a KATP channel in rat and bovine pulmonary vascular endothelial cells. Am J Physiol Cell Physiol 2003; 285: C959–C967, [INFOTRIEVE], [CSA]
  • Chen J, Avdonin V, Ciorba M A, Heinemann S H, Hoshi T. Acceleration of P/C-type inactivation in voltage-gated K+ channels by methionine oxidation. Biophys J 2000; 78: 174–187, [INFOTRIEVE], [CSA]
  • Santarelli L C, Wassef R, Heinemann S H, Hoshi T. Three methionine residues located within the regulator of conductance for K+ (RCK) domains confer oxidative sensitivity to large-conductance Ca2+-activated K+ channels. J Physiol 2006; 571: 329–348, [INFOTRIEVE], [CSA], [CROSSREF]
  • Ciorba M A, Heinemann S H, Weissbach H, Brot N, Hoshi T. Modulation of potassium channel function by methionine oxidation and reduction. Proc Natl Acad Sci USA 1997; 94: 9932–9937, [INFOTRIEVE], [CSA], [CROSSREF]
  • Conforti L, Bodi I, Nisbet J W, Millhorn D E. O2-sensitive K+ channels: role of the Kv1.2-subunit in mediating the hypoxic response. J Physiol 2000; 524: 783–793, [INFOTRIEVE], [CSA], [CROSSREF]
  • Coppock E A, Martens J R, Tamkun M M. Molecular basis of hypoxia-induced pulmonary vasoconstriction: role of voltage-gated K+ channels. Am J Physiol Lung Cell Mol Physiol 2001; 281: L1–L12, [INFOTRIEVE], [CSA]
  • Coppock E A, Tamkun M M. Differential expression of Kv channel α- and β-subunits in the bovine pulmonary arterial circulation. Am J Physiol Lung Cell Mol Physiol 2001; 281: L1350–L1360, [INFOTRIEVE], [CSA]
  • Cornfield D, Reeve H, Tolarova S, Weir E, Archer S. Oxygen causes fetal pulmonary vasodilation through activation of a calcium-dependent potassium channel. Proc Natl Acad Sci USA 1996; 93: 8989–8094, [CSA], [CROSSREF]
  • Dascal N, Schreibmayer W, Lim N F, Wang W, Chavkin C, Di Magno L, Labarca C, Kieffer B L, Gaveriaux-Ruff C, Trollinger D, et al. Atrial G protein-activated K+ channel: expression cloning and molecular properties. Proc Natl Acad Sci USA 1993; 90: 10235–10239, [INFOTRIEVE], [CSA], [CROSSREF]
  • Davies A R, Kozlowski R Z. Kv channel subunit expression in rat pulmonary arteries. Lung 2001; 179: 147–161, [INFOTRIEVE], [CSA], [CROSSREF]
  • Dorrington K L, Clar C, Young J D, Jonas M, Tansley J G, Robbins P A. Time course of the human pulmonary vascular response to 8 hours of isocapnic hypoxia. Am J Physiol 1997; 273: H1126–H1134, [INFOTRIEVE], [CSA]
  • Duprat F, Guillemare E, Romey G, Fink M, Lesage F, Lazdunski M, Honore E. Susceptibility of cloned K+ channels to reactive oxygen species. Proc Natl Acad Sci USA 1995; 92: 11796–11800, [INFOTRIEVE], [CSA], [CROSSREF]
  • Duprat F, Lesage F, Fink M, Reyes R, Heurteaux C, Lazdunski M. TASK, a human background K+ channel to sense external pH variations near physiological pH. EMBO J 1997; 16: 5464–5471, [INFOTRIEVE], [CSA], [CROSSREF]
  • Franco-Obregon A, Lopez-Barneo J. Differential oxygen sensitivity of calcium channels in rabbit smooth muscle cells of conduit and resistance pulmonary arteries. J Physiol 1996; 491.2: 511–518, [CSA]
  • Fried R, Meyrick B, Rabinovitch M, Reid L. Polycythemia and the acute hypoxic response in awake rats following chronic hypoxia. J Appl Physiol 1983; 55: 1167–1172, [INFOTRIEVE], [CSA]
  • Gardener M J, Johnson I T, Burnham M P, Edwards G, Heagerty A M, Weston A H. Functional evidence of a role for two–pore domain potassium channels in rat mesenteric and pulmonary arteries. Br J Pharmacol 2004; 142: 192–202, [INFOTRIEVE], [CSA], [CROSSREF]
  • Goirand F, Bardou M, Guerard P, Dumas J P, Rochette L, Dumas M. ETA, mixed ETA/ETB receptor antagonists, and protein kinase C inhibitor prevent acute hypoxic pulmonary vasoconstriction: influence of potassium channels. J Cardiovasc Pharmacol 2003; 41: 117–125, [INFOTRIEVE], [CSA], [CROSSREF]
  • Goldstein S A, Bayliss D A, Kim D, Lesage F, Plant L D, Rajan S. International Union of Pharmacology, LV: nomenclature and molecular relationships of two-P potassium channels. Pharmacol Rev 2005; 57: 527–540, [INFOTRIEVE], [CSA], [CROSSREF]
  • Grissmer S, Nguyen A N, Aiyar J, Hanson D C, Mather R J, Gutman G A, Karmilowicz M J, Auperin D D, Chandy K G. Pharmacological characterization of five cloned voltage-gated K+ channels, types Kv1.1, 1.2, 1.3, 1.5, and 3.1, stably expressed in mammalian cell lines. Mol Pharmacol 1994; 45: 1227–1234, [INFOTRIEVE], [CSA]
  • Groves B M, Droma T, Sutton J R, McCullough R G, McCullough R E, Zhuang J, Rapmund G, Sun S, Janes C, Moore L G. Minimal hypoxic pulmonary hypertension in normal Tibetians at 3,658 m. J Appl Physiol 1993; 74: 312–318, [INFOTRIEVE], [CSA]
  • Gulbis J M, Mann S, MacKinnon R. Structure of a voltage–dependent K+ channel beta subunit. Cell 1999; 97: 943–952, [INFOTRIEVE], [CSA], [CROSSREF]
  • Gurney A M, Osipenko O N, MacMillan D, McFarlane K M, Tate R J, Kempsill F E. Two-pore domain K channel, TASK-1, in pulmonary artery smooth muscle cells. Circ Res 2003; 93: 957–964, [INFOTRIEVE], [CSA], [CROSSREF]
  • Gutman G A, Chandy K G, Grissmer S, Lazdunski M, McKinnon D, Pardo L A, Robertson G A, Rudy B, Sanguinetti M C, Stuhmer W, Wang X. International Union of Pharmacology, LIII: nomenclature and molecular relationships of voltage-gated potassium channels. Pharmacol Rev 2005; 57: 473–508, [INFOTRIEVE], [CSA], [CROSSREF]
  • Hall S M, Hislop A A, Pierce C M, Haworth S G. Prenatal origins of human intrapulmonary arteries: formation and smooth muscle maturation. Am J Respir Cell Mol Biol 2000; 23: 194–203, [INFOTRIEVE], [CSA]
  • Hasunuma K, Rodman D M, McMurtry I F. Effects of K+ channel blockers on vascular tone in the perfused rat lung. Am Rev Respir Dis 1991; 144: 884–887, [INFOTRIEVE], [CSA]
  • Heginbotham L, Lu Z, Abramson T, MacKinnon R. Mutations in the K+ channel signature sequence. Biophys J 1994; 66: 1061–1067, [INFOTRIEVE], [CSA]
  • Heinemann S, Rettig J, Scott V, Parcej D N, Lorra C, Dolly J, Pongs O. The inactivation behaviour of voltage-gated K-channels may be determined by association of alpha- and beta-subunits. J Physiol Paris 1994; 88: 173–180, [INFOTRIEVE], [CSA], [CROSSREF]
  • Hodgkin A L, Huxley A F. A quantitative description of membrane current and its application to conduction and excitation in nerve. Bull Math Biol 1990; 52: 25–71, [INFOTRIEVE], [CSA]
  • Hogg D S, Davies A R, McMurray G, Kozlowski R Z. Kv2.1 channels mediate hypoxic inhibition of IKv in native pulmonary arterial smooth muscle cells of the rat. Cardiovasc Res 2002; 55: 349–360, [INFOTRIEVE], [CSA], [CROSSREF]
  • Hogg D S, McMurray G, Kozlowski R Z. Endothelial cells freshly isolated from small pulmonary arteries of the rat possess multiple distinct K+ current profiles. Lung 2002; 180: 203–214, [INFOTRIEVE], [CSA]
  • Hong Z, Smith A J, Archer S L, Wu X C, Nelson D P, Peterson D, Johnson G, Weir E K. Pergolide is an inhibitor of voltage-gated potassium channels, including Kv1.5, and causes pulmonary vasoconstriction. Circulation 2005; 112: 1494–1499, [INFOTRIEVE], [CSA]
  • Hong Z, Weir E K, Nelson D P, Olschewski A. Subacute hypoxia decreases voltage-activated potassium channel expression and function in pulmonary artery myocytes. Am J Respir Cell Mol Biol 2004; 31: 337–343, [INFOTRIEVE], [CSA], [CROSSREF]
  • Hulme J T, Coppock E A, Felipe A, Martens J R, Tamkun M M. Oxygen sensitivity of cloned voltage-gated K+ channels expressed in the pulmonary vasculature. Circ Res 1999; 85: 489–497, [INFOTRIEVE], [CSA]
  • Imbrici P, Tucker S J, D'Adamo M C, Pessia M. Role of receptor protein tyrosine phosphatase alpha (RPTPalpha) and tyrosine phosphorylation in the serotonergic inhibition of voltage-dependent potassium channels. Pflugers Arch 2000; 441: 257–262, [INFOTRIEVE], [CSA], [CROSSREF]
  • Jackson W F. Ion channels and vascular tone. Hypertension 2000; 35: 173–178, [INFOTRIEVE], [CSA]
  • Jones R D, Thompson J S, Morice A H. The NADPH oxidase inhibitors iodonium diphenyl and cadmium sulphate inhibit hypoxic pulmonary vasoconstriction in isolated rat pulmonary arteries. Physiol Res 2000; 49: 587–596, [INFOTRIEVE], [CSA]
  • Kato M, Staub N. Response of small pulmonary arteries to unilobar alveolar hypoxia and hypercapnia. Circ Res 1966; 19: 426–440, [INFOTRIEVE], [CSA]
  • Kubo Y, Adelman J P, Clapham D E, Jan L Y, Karschin A, Kurachi Y, Lazdunski M, Nichols C G, Seino S, Vandenberg C A. International Union of Pharmacology, LIV: nomenclature and molecular relationships of inwardly rectifying potassium channels. Pharmacol Rev 2005; 57: 509–526, [INFOTRIEVE], [CSA], [CROSSREF]
  • Kuijpers M HM, van Zutphen B FM, de Jong W. The fawn–hooded rat. Hypertension 1987; 9: I-34–I-36, [CSA]
  • Lee S Y, Lee A, Chen J, MacKinnon R. Structure of the KvAP voltage-dependent K+ channel and its dependence on the lipid membrane. Proc Natl Acad Sci USA 2005; 102: 15441–15446, [INFOTRIEVE], [CSA], [CROSSREF]
  • Levitan E S, Gealy R, Trimmer J S, Takimoto K. Membrane depolarization inhibits Kv1.5 voltage-gated K+ channel gene transcription and protein expression in pituitary cells. J Biol Chem 1995; 270: 6036–6041, [INFOTRIEVE], [CSA], [CROSSREF]
  • Levitan E S, Takimoto K. Dynamic regulation of K+ channel gene expression in differentiated cells. J Neurobiol 1998; 37: 60–68, [INFOTRIEVE], [CSA], [CROSSREF]
  • Liu J Q, Sham J S, Shimoda L A, Kuppusamy P, Sylvester J T. Hypoxic constriction and reactive oxygen species in porcine distal pulmonary arteries. Am J Physiol Lung Cell Mol Physiol 2003; 285: L322–L333, [INFOTRIEVE], [CSA]
  • Lockhart A, Zelter M, Mensch-Dechene J, Antezana G, Paz-Zamora M, Vargas E, Coudert J. Pressure–flow–volume relationships in pulmonary circulation of normal highlanders. J Appl Physiol 1976; 41: 449–456, [INFOTRIEVE], [CSA]
  • Long S B, Campbell E B, Mackinnon R. Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 2005; 309: 897–903, [INFOTRIEVE], [CSA], [CROSSREF]
  • Lopez-Barneo J, Pardal R, Ortega-Saenz P. Cellular mechanism of oxygen sensing. Annu Rev Physiol 2001; 63: 259–287, [INFOTRIEVE], [CSA], [CROSSREF]
  • Madden J, Dawson C, Harder D. Hypoxia-induced activation in small isolated pulmonary arteries from the cat. J Appl Physiol 1985; 59: 113–118, [INFOTRIEVE], [CSA]
  • Mandegar M, Fung Y C, Huang W, Remillard C V, Rubin L J, Yuan J X. Cellular and molecular mechanisms of pulmonary vascular remodeling: role in the development of pulmonary hypertension. Microvasc Res 2004; 68: 75–103, [INFOTRIEVE], [CSA], [CROSSREF]
  • McCartney C E, McClafferty H, Huibant J M, Rowan E G, Shipston M J, Rowe I C. A cysteine-rich motif confers hypoxia sensitivity to mammalian large conductance voltage- and Ca-activated K (BK) channel alpha-subunits. Proc Natl Acad Sci USA 2005; 102: 17870–17876, [INFOTRIEVE], [CSA], [CROSSREF]
  • McCormack T, McCormack K. Shaker K+ channel B subunits belong to an NAD(P)H-dependent oxidoreductase superfamily. Cell 1994; 79: 1133–1135, [INFOTRIEVE], [CSA], [CROSSREF]
  • McMurtry I F, Davidson A B, Reeves J T, Grover R F. Inhibition of hypoxic pulmonary vasoconstriction by calcium antagonists in isolated rat lungs. Circ Res 1976; 38: 99–104, [INFOTRIEVE], [CSA]
  • McMurtry I F, Petrun M D, Reeves J T. Lungs from chronically hypoxic rats have decreased pressor response to acute hypoxia. Am J Physiol 1978; 235: H104–H109, [INFOTRIEVE], [CSA]
  • McMurtry M S, Archer S L, Altieri D C, Bonnet S, Haromy A, Harry G, Bonnet S, Puttagunta L, Michelakis E D. Gene therapy targeting survivin selectively induces pulmonary vascular apoptosis and reverses pulmonary arterial hypertension. J Clin Invest 2005; 115: 1479–1491, [INFOTRIEVE], [CSA], [CROSSREF]
  • Michelakis E D, Hampl V, Nsair A, Wu X, Harry G, Haromy A, Gurtu R, Archer S L. Diversity in mitochondrial function explains differences in vascular oxygen sensing. Circ Res 2002; 90: 1307–1315, [INFOTRIEVE], [CSA], [CROSSREF]
  • Michelakis E D, McMurtry M S, Wu X C, Dyck J R, Moudgil R, Hopkins T A, Lopaschuk G D, Puttagunta L, Waite R, Archer S L. Dichloroacetate, a metabolic modulator, prevents and reverses chronic hypoxic pulmonary hypertension in rats: role of increased expression and activity of voltage-gated potassium channels. Circulation 2002; 105: 244–250, [INFOTRIEVE], [CSA], [CROSSREF]
  • Michelakis E D, Weir E K, Wu X, Nsair A, Waite R, Hashimoto K, Puttagunta L, Knaus H G, Archer S L. Potassium channels regulate tone in rat pulmonary veins. Am J Physiol Lung Cell Mol Physiol 2001; 280: L1138–L1147, [INFOTRIEVE], [CSA]
  • Miguel-Velado E, Moreno-Dominguez A, Colinas O, Cidad P, Heras M, Perez-Garcia M T, Lopez-Lopez J R. Contribution of Kv channels to phenotypic remodeling of human uterine artery smooth muscle cells. Circ Res 2005; 97: 1280–1287, [INFOTRIEVE], [CSA], [CROSSREF]
  • Mohazzab-H K, Fayngersh R, Kaminski P. Potential role of NADPH oxidoreductase-derived reactive O2 species in calf pulmonary arterial PO2-elicited responses. Am J Physiol 1995; 269: L637–L644, [CSA]
  • Mohazzab-H K, Wolin M. Properties of a superoxide anion-generating microsomal NADH oxidoreductase, a potential pulmonary artery PO2 sensor. Am J Physiol 1994; 267: L823–L831, [CSA]
  • Naeije R. Pulmonary circulation at high altitude. Respiration 1997; 64: 429–434, [INFOTRIEVE], [CSA]
  • Naeije R, Hallemans R, Melot C, Boeynaems J M, Mols P, Lejeune P, Rie M A. Eicosanoids and hypoxic pulmonary vasoconstriction in normal man. Bull Eur Physiopathol Respir 1987; 23: 613–617, [INFOTRIEVE], [CSA]
  • Nagendran J, Stewart T K, Hoskinson M, Archer S. An anesthesiologist's guide to hypoxic pulmonary vasoconstriction: implications for managing single–lung anesthesia and atelectasis. Curr Opin Anaesthesiol 2006; 19: 34–43, [INFOTRIEVE], [CSA], [CROSSREF]
  • Navarro-Antolin J, Levitsky K L, Calderon E, Ordonez A, Lopez–Barneo J. Decreased expression of maxi-K+ channel β1-subunit and altered vasoregulation in hypoxia. Circulation 2005; 112: 1309–1315, [INFOTRIEVE], [CSA], [CROSSREF]
  • Olschewski A, Li Y, Tang B, Hanze J, Eul B, Bohle R M, Wilhelm J, Morty R E, Brau M E, Weir E K, Kwapiszewska G, Klepetko W, Seeger W, Olschewski H. Impact of TASK-1 in human pulmonary artery smooth muscle cells. Circ Res 2006; 98: 1072–1080, [INFOTRIEVE], [CSA], [CROSSREF]
  • Osipenko O N, Tate R J, Gurney A M. Potential role for Kv3.1b channels as oxygen sensors. Circ Res 2000; 86: 534–540, [INFOTRIEVE], [CSA]
  • Paky A, Michael J, Burke-Wolin T, Wolin M. Endogenous production of superoxide by rabbit lungs: effects of hypoxia or metabolic inhibitors. J Appl Physiol 1993; 74: 2868–2874, [INFOTRIEVE], [CSA]
  • Patel A J, Lazdunski M, Honore E. Kv2.1/Kv9.3, a novel ATP-dependent delayed-rectifier K+ channel in oxygen-sensitive pulmonary artery myocytes. EMBO J 1997; 16: 6615–6625, [INFOTRIEVE], [CSA], [CROSSREF]
  • Perchenet L, Hilfiger L, Mizrahi J, Clement-Chomienne O. Effects of anorexinogen agents on cloned voltage-gated K+ channel hKv1.5. J Pharmacol Exp Ther 2001; 298: 1108–1119, [INFOTRIEVE], [CSA]
  • Perez-Garcia M T, Lopez-Lopez J R, Gonzalez C. Kvbeta1.2 subunit coexpression in HEK293 cells confers O2 sensitivity to Kv4.2 but not to Shaker channels. J Gen Physiol 1999; 113: 897–907, [INFOTRIEVE], [CSA], [CROSSREF]
  • Platoshyn O, Remillard C V, Fantozzi I, Mandegar M, Sison T T, Zhang S, Burg E, Yuan J X. Diversity of voltage-dependent K+ channels in human pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2004; 287: L226–L238, [INFOTRIEVE], [CSA], [CROSSREF]
  • Platoshyn O, Yu Y, Golovina V A, McDaniel S S, Krick S, Li L, Wang J Y, Rubin L J, Yuan J X. Chronic hypoxia decreases Kv channel expression and function in pulmonary artery myocytes. Am J Physiol Lung Cell Mol Physiol 2001; 280: L801–L812, [INFOTRIEVE], [CSA]
  • Platoshyn O, Zhang S, McDaniel S S, Yuan J X. Cytochrome c activates K+ channels before inducing apoptosis. Am J Physiol Cell Physiol 2002; 283: C1298–C1305, [INFOTRIEVE], [CSA]
  • Pongs O, Kecskemethy N, Muller R, Krah–Jentgens I, Baumann A, Kiltz H H, Canal I, Llamazares S, Ferrus A. Shaker encodes a family of putative potassium channel proteins in the nervous system of Drosophila. EMBO J 1988; 7: 1087–1096, [INFOTRIEVE], [CSA]
  • Post J, Hume J, Archer S, Weir E. Direct role for potassium channel inhibition in hypoxic pulmonary vasoconstriction. Am J Physiol 1992; 262: C882–C890, [INFOTRIEVE], [CSA]
  • Post J M, Gelband C H, Hume J R. [Ca2+]i inhibition of K+ channels in canine pulmonary artery: novel mechanism for hypoxia–induced membrane depolarization. Circ Res 1995; 77: 131–139, [INFOTRIEVE], [CSA]
  • Pozeg Z I, Michelakis E D, McMurtry M S, Thebaud B, Wu X C, Dyck J R, Hashimoto K, Wang S, Moudgil R, Harry G, Sultanian R, Koshal A, Archer S L. In vivo gene transfer of the O2-sensitive potassium channel Kv1.5 reduces pulmonary hypertension and restores hypoxic pulmonary vasoconstriction in chronically hypoxic rats. Circulation 2003; 107: 2037–2044, [INFOTRIEVE], [CSA], [CROSSREF]
  • Rao A, Luo C, Hogan P G. Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol 1997; 15: 707–747, [INFOTRIEVE], [CSA], [CROSSREF]
  • Reeve H L, Michelakis E, Nelson D P, Weir E K, Archer S L. Alterations in a redox oxygen sensing mechanism in chronic hypoxia. J Appl Physiol 2001; 90: 2249–2256, [INFOTRIEVE], [CSA]
  • Reeve H L, Nelson D P, Archer S L, Weir E K. Effects of fluoxetine, phentermine, and venlafaxine on pulmonary arterial pressure and electrophysiology. Am J Physiol 1999; 276: L213–L219, [INFOTRIEVE], [CSA]
  • Reeve H L, Weir E K, Nelson D P, Peterson D A, Archer S L. Opposing effects of oxidants and antioxidants on K+ channel activity and tone in vascular tissue. Exp Physiol 1995; 80: 825–834, [INFOTRIEVE], [CSA]
  • Remillard C V, Yuan J X. Activation of K+ channels: an essential pathway in programmed cell death. Am J Physiol Lung Cell Mol Physiol. 2004; 286: L49–L67, [INFOTRIEVE], [CSA]
  • Rettig J, Helnemann S, Wunder F, Lorra C, Parcej D, Dolly J, Pongs O. Inactivation properties of voltage-gated K+ channels altered by presence of b-subunit. Nature 1994; 369: 289–294, [INFOTRIEVE], [CSA]
  • Robertson T P, Ward J P, Aaronson P I. Hypoxia induces the release of a pulmonary-selective, Ca2+-sensitising, vasoconstrictor from the perfused rat lung. Cardiovasc Res 2001; 50: 145–150, [INFOTRIEVE], [CSA], [CROSSREF]
  • Ruppersberg J P, Stocker M, Pongs O, Heinemann S H, Frank R, Koenen M. Regulation of fast inactivation of cloned mammalian IK(A) channels by cysteine oxidation. Nature 1991; 352: 711–714, [INFOTRIEVE], [CSA], [CROSSREF]
  • Russell S N, Overturf K E, Horowitz B. Heterotetramer formation and charybdotoxin sensitivity of two K+ channels cloned from smooth muscle. Am J Physiol 1994; 267: C1729–C1733, [INFOTRIEVE], [CSA]
  • Salinas M, Duprat F, Heurteaux C, Hugnot J P, Lazdunski M. New modulatory alpha subunits for mammalian Shab K+ channels. J Biol Chem 1997; 272: 24371–24379, [INFOTRIEVE], [CSA], [CROSSREF]
  • Salkoff L, Jegla T. Surfing the DNA databases for K+ channels nets yet more diversity. Neuron 1995; 15: 489–492, [INFOTRIEVE], [CSA], [CROSSREF]
  • Sato K, Webb S, Tucker A, Rabinovitch M, O'Brien R, McMurtry I, Stelzner T. Factors influencing the idiopathic development of pulmonary hypertension in the fawn hooded rat. Rev Respir Dis 1992; 145: 793–797, [CSA]
  • Schoene R B. Lung disease at high altitude. Adv Exp Med Biol 1999; 474: 47–56, [INFOTRIEVE], [CSA]
  • Shi G, Nakahira K, Hammond S, Rhodes K J, Schechter L E, Trimmer J S. Beta subunits promote K+ channel surface expression through effects early in biosynthesis. Neuron 1996; 16: 843–852, [INFOTRIEVE], [CSA], [CROSSREF]
  • Shimoda L A, Manalo D J, Sham J S, Semenza G L, Sylvester J T. Partial HIF-1alpha deficiency impairs pulmonary arterial myocyte electrophysiological responses to hypoxia. Am J Physiol Lung Cell Mol Physiol 2001; 281: L202–L208, [INFOTRIEVE], [CSA]
  • Shimoda L A, Sylvester J T, Sham J S. Inhibition of voltage-gated K+ current in rat intrapulmonary arterial myocytes by endothelin-1. Am J Physiol 1998; 274: L842–L853, [INFOTRIEVE], [CSA]
  • Shimoda L A, Welsh L E, Pearse D B. Inhibition of inwardly rectifying K+ channels by cGMP in pulmonary vascular endothelial cells. Am J Physiol Lung Cell Mol Physiol 2002; 283: L297–L304, [INFOTRIEVE], [CSA]
  • Shirai M, Sada K, Ninomiya I. Effects of regional alveolar hypoxia and hypercapnia on small pulmonary vessels in cats. J Appl Physiol 1986; 61: 440–448, [INFOTRIEVE], [CSA]
  • Smirnov S V, Beck R, Tammaro P, Ishii T, Aaronson P I. Electrophysiologically distinct smooth muscle cell subtypes in rat conduit and resistance pulmonary arteries. J Physiol 2002; 538: 867–878, [INFOTRIEVE], [CSA], [CROSSREF]
  • Smirnov S V, Robertson T P, Ward J P, Aaronson P I. Chronic hypoxia is associated with reduced delayed rectifier K+ current in rat pulmonary artery muscle cells. Am J Physiol 1994; 266: H365–H370, [INFOTRIEVE], [CSA]
  • Srivastava D, Olson E N. A genetic blueprint for cardiac development. Nature 2000; 407: 221–226, [INFOTRIEVE], [CSA], [CROSSREF]
  • Standen N B, Quayle J M. K+ channel modulation in arterial smooth muscle. Acta Physiol Scand 1998; 164: 549–557, [INFOTRIEVE], [CSA], [CROSSREF]
  • Strong M, Chandy K G, Gutman G A. Molecular evolution of voltage-sensitive ion channel genes: on the origins of electrical excitability. Mol Biol Evol 1993; 10: 221–242, [INFOTRIEVE], [CSA]
  • Stuhmer W, Stocker M, Sakmann B, Seeburg P, Baumann A, Grupe A, Pongs O. Potassium channels expressed from rat brain cDNA have delayed rectifier properties. FEBS Lett 1988; 242: 199–206, [INFOTRIEVE], [CSA], [CROSSREF]
  • Szabo I, Nilius B, Zhang X, Busch A E, Gulbins E, Suessbrich H, Lang F. Inhibitory effects of oxidants on n-type K+ channels in T lymphocytes and Xenopus oocytes. Pflugers Arch 1997; 433: 626–632, [INFOTRIEVE], [CSA], [CROSSREF]
  • Taglialatela M, Castaldo P, Iossa S, Pannaccione A, Fresi A, Ficker E, Annunziato L. Regulation of the human ether-a-gogo related gene (HERG) K+ channels by reactive oxygen species. Proc Natl Acad Sci USA 1997; 94: 11698–11703, [INFOTRIEVE], [CSA], [CROSSREF]
  • Tolins M, Weir E, Chesler E, Nelson D, From A. Pulmonary vascular tone is increased by a voltage-dependent calcium channel potentiator. J Appl Physiol 1986; 60: 942–948, [INFOTRIEVE], [CSA]
  • Vega-Saenz d e, Miera E, Rudy B. Modulation of K+ channels by hydrogen peroxide. Biochem Biophys Res Commun 1992; 186: 1681–1687, [CSA], [CROSSREF]
  • Wang J, Juhaszova M, Rubin L J, Yuan X J. Hypoxia inhibits gene expression of voltage–gated K+ channel alpha subunits in pulmonary artery smooth muscle cells. J Clin Invest 1997; 100: 2347–2353, [INFOTRIEVE], [CSA]
  • Wang J, Weigand L, Wang W, Sylvester J T, Shimoda L A. Chronic hypoxia inhibits Kv channel gene expression in rat distal pulmonary artery. Am J Physiol Lung Cell Mol Physiol 2005; 288: L1049–L1058, [INFOTRIEVE], [CSA], [CROSSREF]
  • Waypa G B, Chandel N S, Schumacker P T. Model for hypoxic pulmonary vasoconstriction involving mitochondrial oxygen sensing. Circ Res 2001; 88: 1259–1266, [INFOTRIEVE], [CSA]
  • Wei A D, Gutman G A, Aldrich R, Chandy K G, Grissmer S, Wulff H. International Union of Pharmacology, LII: nomenclature and molecular relationships of calcium–activated potassium channels. Pharmacol Rev 2005; 57: 463–472, [INFOTRIEVE], [CSA], [CROSSREF]
  • Weir E K, Lopez-Barneo J, Buckler K J, Archer S L. Acute oxygen-sensing mechanisms. N Engl J Med 2005; 353: 2042–2055, [INFOTRIEVE], [CSA], [CROSSREF]
  • Weir E K, Reeve H L, Huang J M, Michelakis E, Nelson D P, Hampl V, Archer S L. Anorexic agents aminorex, fenfluramine, and dexfenfluramine inhibit potassium current in rat pulmonary vascular smooth muscle and cause pulmonary vasoconstriction. Circulation 1996; 94: 2216–2220, [INFOTRIEVE], [CSA]
  • Weir E K, Reeve H L, Johnson G, Michelakis E D, Nelson D P, Archer S L. A role for potassium channels in smooth muscle cells and platelets in the etiology of primary pulmonary hypertension. Chest 1998; 114: 200–204, [CSA]
  • Weissmann N, Tadic A, Hanze J, Rose F, Winterhalder S, Nollen M, Schermuly R T, Ghofrani H A, Seeger W, Grimminger F. Hypoxic vasoconstriction in intact lungs: a role for NADPH oxidase-derived H2O2?. Am J Physiol Lung Cell Mol Physiol 2000; 279: L683–L690, [INFOTRIEVE], [CSA]
  • Yu Y, Platoshyn O, Zhang J, Krick S, Zhao Y, Rubin L J, Rothman A, Yuan J X. c-Jun decreases voltage-gated K+. channel activity in pulmonary artery smooth muscle cells. Circulation 2001; 104: 1557–1563, [INFOTRIEVE], [CSA]
  • Yuan X-J. Voltage gated K+ currents regulate resting membrane potential and [Ca2+]i in pulmonary artery myocytes. Circ Res 1995; 77: 370–378, [INFOTRIEVE], [CSA]
  • Yuan X-J, Goldman W, Tod M, Rubin L, Blaustein M. Hypoxia reduces potassium currents in cultured rat pulmonary but not mesenteric arterial myocytes. Am J Physiol 1993; 264: L116–L123, [INFOTRIEVE], [CSA]
  • Yuan X J. Role of calcium-activated chloride current in regulating pulmonary vasomotor tone. Am J Physiol 1997; 272: L959–L968, [INFOTRIEVE], [CSA]
  • Yuan X J. Voltage-gated K+ currents regulate resting membrane potential and [Ca2+]i in pulmonary arterial myocytes. Circ Res 1995; 77: 370–378, [INFOTRIEVE], [CSA]
  • Yuan X J, Goldman W F, Tod M L, Rubin L J, Blaustein M P. Hypoxia reduces potassium currents in cultured rat pulmonary but not mesenteric arterial myocytes. Am J Physiol 1993; 264: L116–L123, [INFOTRIEVE], [CSA]
  • Yuan X J, Wang J, Juhaszova M, Gaine S P, Rubin L J. Attenuated K+ channel gene transcription in primary pulmonary hypertension. Lancet 1998; 351: 726–727, [INFOTRIEVE], [CSA], [CROSSREF]
  • Yuan X J, Wang J, Juhaszova M, Golovina V A, Rubin L J. Molecular basis and function of voltage-gated K+ channels in pulmonary arterial smooth muscle cells. Am J Physiol 1998; 274: L621–L635, [INFOTRIEVE], [CSA]
  • Zhang H, Li P, Almassi G H, Nicolosi A, Olinger G N, Rusch N J. Single-channel and functional characteristics of a KCa channel in vascular muscle membranes of human saphenous veins. J Cardiovasc Pharmacol 1996; 28: 611–617, [INFOTRIEVE], [CSA], [CROSSREF]
  • Zhou M, MacKinnon R. A mutant KcsA K+ channel with altered conduction properties and selectivity filter ion distribution. J Mol Biol 2004; 338: 839–846, [INFOTRIEVE], [CSA], [CROSSREF]
  • Zhou Y, Morais-Cabral J H, Kaufman A, MacKinnon R. Chemistry of ion coordination and hydration revealed by a K+ channel–Fab complex at 2.0 Å resolution. Nature 2001; 414: 43–48, [INFOTRIEVE], [CSA], [CROSSREF]
  • Zhu W H, Conforti L, Czyzyk–Krzeska M F, Millhorn D E. Membrane depolarization in PC-12 cells during hypoxia is regulated by an O2-sensitive K+ current. Am J Physiol 1996; 271: C658–C665, [INFOTRIEVE], [CSA]
  • Zielinski J. Long-term oxygen therapy in conditions other than chronic obstructive pulmonary disease. Respir Care 2000; 45: 172–176, discussion 176–177[INFOTRIEVE], [CSA]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.