57
Views
8
CrossRef citations to date
0
Altmetric
Articles

Ca2+ Signaling, TRP Channels, and Endothelial Permeability

, , &
Pages 693-708 | Received 29 Mar 2006, Accepted 05 Jul 2006, Published online: 10 Jul 2009

REFERENCES

  • Dull R O, Jaffe H A, Ge M, Ryan T J, Malik A B. Pulmonary vascular endothelium and coagulation. The Lung, R G Crystal, J B West, E R Weibel, P J Barnes. Lippincott-Raven, Philadephia 1997; 653–662
  • Moncada S, Vane J R. Pharmacology and endogenous roles of prostaglandin endoperoxides, thromboxane A2 and prostacyclin. Pharmacol Rev 1978; 30: 293–331, [INFOTRIEVE], [CSA]
  • Radomski M W, Palmer P MJ, Moncada S. The anti-aggregating properties of vascular endothelium interactions between prostacyclin and nitric oxide. Br J Pharmacol 1987; 92: 639–646, [INFOTRIEVE], [CSA]
  • Esmon C T. Molecular events that control the protein C anticoagulant pathway. Thromb Haemost 1993; 70: 29–35, [INFOTRIEVE], [CSA]
  • Furchgott R F, Zawadzki J V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980; 288: 687–692, [CSA], [CROSSREF]
  • Moncada S, Palmer R MJ, Higgs E A. Nitric oxide: physiology, pathophysiology and pharmacology. Pharmacol Rev 1991; 43: 109–142, [INFOTRIEVE], [CSA]
  • Fan J, Ye R D, Malik A B. Transcriptional mechanisms of acute lung injury. Am J Physiol Lung Cell Mol Physiol 2001; 281: L1037–L1050, [INFOTRIEVE], [CSA]
  • Matthay M A. Severe sepsis: a new treatment with both anticoagulant and antiinflamatory properties. N Engl J Med 2001; 344: 759–762, [INFOTRIEVE], [CSA], [CROSSREF]
  • Weis S M, Cheresh D A. Pathophysiological consequences of VEGF–induced vascular permeability. Nature 2005; 437: 497–504, [INFOTRIEVE], [CSA], [CROSSREF]
  • Tiruppathi C, Minshall R D, Paria B C, Vogel S M, Malik A B. Role of Ca2+ signaling in the regulation of endothelial permeability. Vascul Pharmacol 2003; 39: 173–185, [CSA], [CROSSREF]
  • Dudek S M, Garcia J GN. Cytoskeletal regulation of pulmonary vascular permeability. J Appl Physiol 2001; 91: 1487–1500, [INFOTRIEVE], [CSA]
  • Minshall R D, Tiruppathi C, Vogel S M, Malik A B. Vesicle formation and trafficking in endothelial cells and regulation of endothelial barrier function. Histochem Cell Biol 2002; 117: 105–112, [INFOTRIEVE], [CSA], [CROSSREF]
  • Moy A B, Van Engelenhoven J, Bodmer J, Kamath J, Keese C R, Giaever I, Shasby S, Shasby D M. Histamine and thrombin modulate endothelial focal adhesion through centripetal and centrifugal forces. J Clin Invest 1996; 97: 1020–1027, [INFOTRIEVE], [CSA]
  • Nguyen L T, Lum H, Tiruppathi C, Malik A B. Site-specific thrombin receptor antibodies inhibit Ca2+ signaling and increased endothelial permeability. Am J Physiol Cell Physiol 1997; 273: C1756–C1763, [CSA]
  • Moore T M, Chetham P M, Kelly J J, Stevens T. Signal transduction and regulation of lung endothelial cell permeability. Interaction between calcium and cAMP. Am J Physiol Lung Cell Mol Physiol 1998; 275: L203–L222, [CSA]
  • Sandoval R, Malik A B, Minshall R D, Kouklis P, Ellis C A, Tiruppathi C. Ca2+ signaling and PKCα activate increased endothelial permeability by disassembly of VE-cadherin junctions. J Physiol (Lond) 2001; 533: 433–445, [CSA], [CROSSREF]
  • Sandoval R, Malik A B, Naqvi T, Mehta D, Tiruppathi C. Requirement for Ca2+ signaling in the mechanism of thrombin-induced increase in endothelial permeability. Am J Physiol Lung Cell Mol Physiol 2001; 280: L239–L247, [INFOTRIEVE], [CSA]
  • van Nieuw Amerongen G P, Draijer R, Vermeer M A, van Hinsbergh V WM. Transient and prolonged increase in endothelial permeability induced by histamine and thrombin: role of protein kinases, calcium, and RhoA. Circ Res 1998; 83: 1115–1123, [INFOTRIEVE], [CSA]
  • van Nieuw Amerongen G P, Delft S V, Vermeer M A, Collard J G, van Hinsbergh V WM. Activation of RhoA by thrombin in endothelial hyperpermeability: role of rho kinase and protein tyrosine kinases. Circ Res 2000; 87: 335–340, [INFOTRIEVE], [CSA]
  • Kelly J J, Moore T M, Babal Diwan A H, Stevens T, Thompson W J. Pulmonary microvascular and macrovascular endothelial cells: differential regulation of Ca2+ and permeability. Am J Physiol Lung Cell Mol Physiol 1998; 274: L810–L819, [CSA]
  • Moore T M, Brough G H, Babal P, Kelley J J, Li M, Stevens T. Store-operated calcium entry promotes shape change in pulmonary endothelial cells expressing Trp1. Am J Physiol Lung Cell Mol Physiol 1998; 275: L574–L582, [CSA]
  • Norwood N, Moore T M, Dean D A, Bhattacharjee R, Li M, Stevens T. Store-operated calcium entry and increased endothelial permeability. Am J Physiol Lung Cell Mol Physiol 2000; 279: L815–L824, [INFOTRIEVE], [CSA]
  • Tiruppathi C, Yan W, Sandoval R, Naqvi T, Pronin A N, Benovic J L, Malik A B. G protein-coupled receptor kinase-5 regulates thrombin-activated signaling in endothelial cells. Proc Natl Acad Sci USA 2000; 97: 7440–7445, [INFOTRIEVE], [CSA], [CROSSREF]
  • Putney J W, Jr. TRP, inositol 1, 4, 5–trisphosphate receptors, and capacitative calcium entry. Proc Natl Acad Sci USA 1999; 96: 14669–14671, [INFOTRIEVE], [CSA], [CROSSREF]
  • Freichel M, Schweig U, Stauffberger S, Freise D, Schorb W, Flockerzi V. Store-operated cation channels in the heart and cells of the cardiovascular system. Cell Physiol Biochem 1999; 9: 270–283, [INFOTRIEVE], [CSA], [CROSSREF]
  • Tiruppathi C, Freichel M, Vogel S M, Paria B C, Mehta D, Flockerzi V, Malik A B. Impairment of store-operated Ca2+ entry in TRPC4−/− mice interferes with increase in lung microvascular permeability. Circ Res 2002; 91: 70–76, [INFOTRIEVE], [CSA], [CROSSREF]
  • Rabiet M J, Plantier J L, Rival Y, Genoux Y, Lampugnani M G, Dejana E. Thrombin-induced increase in endothelial permeability is associated with changes in cell-to-cell junction organization. Arterioscler Thromb Vasc Biol 1996; 16: 488–496, [INFOTRIEVE], [CSA]
  • Vogel S M, Gao X, Mehta D, Ye R D, John T A, Andrade-Gordon P, Tiruppathi C, Malik A B. Abrogation of thrombin-induced increase in pulmonary microvascular permeability in PAR-1 knockout mice. Physiol Genomics 2000; 4: 137–145, [INFOTRIEVE], [CSA]
  • Lum H, Del Vecchio P J, Schneider A S, Goligorsky M S, Malik A B. Calcium dependence of the thrombin-induced increase in endothelial albumin permeability. J Appl Physiol 1989; 66: 1471–1476, [INFOTRIEVE], [CSA], [CROSSREF]
  • Lum H, Aschner J L, Phillips P G, Fletcher P W, Malik A B. Time-course of thrombin-induced increase in endothelial permeability: relationship to [Ca2+]i and inositol polyphosphates. Am J Physiol Lung Cell Mol Physiol 1992; 263: L219–L225, [CSA]
  • Ellis C A, Tiruppathi C, Sandoval R, Niles W D, Malik A B. Time course of recovery of endothelial cell surface thrombin receptor (PAR–1) expression. Am J Physiol Cell Physiol 1999; 276: C38–C45, [CSA]
  • Garcia J GN, Davis H W, Patterson C E. Regulation of endothelial gap formation and barrier dysfunction: role of myosin light chain phosphorylation. J Cell Physiol 1995; 163: 510–522, [INFOTRIEVE], [CSA], [CROSSREF]
  • Wysolmerski R B, Lagunoff D. Involvement of myosin light chain kinase in endothelial cell retraction. Proc Natl Acad Sci USA 1990; 87: 16–20, [INFOTRIEVE], [CSA], [CROSSREF]
  • Goeckeler Z M, Wysolmerski R B. Myosin light chain kinase-regulated endothelial cell contraction: the relationship between isometric tension, actin polymerization, and myosin phosphorylation. J Cell Biol 1995; 130: 613–627, [INFOTRIEVE], [CSA], [CROSSREF]
  • Vouret-Craviari V, Boquet P, Pouyssegur J, Obberghen-Schilling E V. Regulation of the actin cytoskeleton by thrombin in human endothelial cells: role of Rho proteins in endothelial barrier function. Mol Biol Cell 1998; 9: 2639–2653, [INFOTRIEVE], [CSA]
  • Lynch J J, Ferro T J, Blumenstock F A, Brockenauer A M, Malik A B. Increased endothelial albumin permeability mediated by protein kinase C activation. J Clin Invest 1990; 85: 1991–1998, [INFOTRIEVE], [CSA]
  • Lum H, Andersen T T, Siflinger-Birnboim A, Tiruppathi C, Goligorsky M S, Fenton J W, II, Malik A B. Thrombin receptor peptide inhibits thrombin-induced increase in endothelial permeability by receptor desensitization. J Cell Biol 1993; 120: 1491–1499, [INFOTRIEVE], [CSA], [CROSSREF]
  • Tiruppathi C, Malik A B, Del Vecchio P J, Keese C R, Giaever I. Electrical method for detection of endothelial cell shape change in real time: assessment of endothelial barrier function. Proc Natl Acad Sci USA 1992; 89: 7919–7923, [INFOTRIEVE], [CSA], [CROSSREF]
  • Mehta D, Rahman A, Malik A B. Protein kinase C-α signals Rho-guanine nucleotide dissociation inhibitor phosphorylation and Rho activation and regulates the endothelial cell barrier function. J Biol Chem 2001; 276: 22614–22620, [INFOTRIEVE], [CSA], [CROSSREF]
  • Corada M, Mariotti M, Thurston G, Smith K, Kunkel R, Brockhaus M, Lampugnani M G, Martin-Padura I, Stoppacciaro A, Ruco L, McDonald D M, Ward P A, Dejana E. Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proc Natl Acad Sci USA 1999; 96: 9815–9820, [INFOTRIEVE], [CSA], [CROSSREF]
  • Dejana E. Endothelial aherens junctions: implications in the control of vascular permeability and angiogenesis. J Clin Invest 1996; 98: 1949–1953, [INFOTRIEVE], [CSA]
  • Gao X, Kouklis P, Xu N, Minshall R D, Sandoval R, Vogel S M, Malik A B. Reversibility of increased microvessel permeability in response to VE-cadherin disassembly. Am J Physiol 2000; 279: L1218–L1225, [CSA]
  • Lampugnani M G, Corada M, Caveda L, Breviario F, Ayalon O, Geiger B, Dejana E. The molcular organization of endothelial cell to cell junctions: differential association of plakoglobin, beta-catenin, and alpha-catenin with vascular cadherin (VE-cadherin). J Cell Biol 1995; 129: 203–217, [INFOTRIEVE], [CSA], [CROSSREF]
  • Winter M C, Kamath A M, Ries D R, Shasby S S, Chen Y T, Shasby M. Histamine alters cadherin-mediated sites of endothelial adhesion. Am J Physiol Lung Cell Mol Physiol 1999; 277: L988–L995, [CSA]
  • Garcia J GN, Schaphorst K L, Shi S, Verin A D, Hart C M, Callahan K S, Patterson C E. Mechanism of ionomycin-induced endothelial cell barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 1997; 273: L172–L184, [CSA]
  • Nilius B, Droogmans G. Ion channels and their role in vascular endothelium. Physiol Rev 2001; 81: 1415–1459, [INFOTRIEVE], [CSA]
  • Montell C, Birnbaumer L, Flockerzi V. The TRP channels, a remarkable functional family. Cell 2002; 108: 595–598, [INFOTRIEVE], [CSA], [CROSSREF]
  • Pedersen S F, Owsianik G, Nilius B. TRP channels: an overview. Cell Calcium 2005; 38: 233–252, [INFOTRIEVE], [CSA], [CROSSREF]
  • Wissenbach U, Niemeyer B A, Flockerzi V. TRP channels as potential drug targets. Biol Cell 2004; 96: 47–54, [INFOTRIEVE], [CSA], [CROSSREF]
  • Hofmann T, Obukhov A G, Schaefer M, Harteneck C, Gudermann T, Schultz G. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 1999; 397: 259–263, [INFOTRIEVE], [CSA], [CROSSREF]
  • Boulay G, Zhu X, Peyton M, Jiang M, Hurst R, Stefani E, Birnbaumer L. Cloning and expression of a noval mammalian homolog of Drosophila transient receptor potential (Trp) involved in calcium entry secondary to activation of receptors coupled by the Gq class of G proteins. J Biol Chem 1997; 272: 29672–29680, [INFOTRIEVE], [CSA], [CROSSREF]
  • Jungnickel M K, Marrero H, Birnbaumer L, Lemos J R, Florman H M. Trp2 regulates entry of Ca2+ into mouse sperm triggered by egg ZP3. Nat Cell Biol 2001; 3: 499–502, [INFOTRIEVE], [CSA]
  • Stowers L, Holy T E, Meister M, Dulac C, Koentges G. Loss of sex discrimination and male–male aggression in mice deficient for TRP2. Science 2002; 295: 1493–1500, [INFOTRIEVE], [CSA]
  • Lockwich T P, Liu X, Singh B B, Jadlowiec J, Weiland S, Ambudkar I S. Assembly of trp1 in a signaling complex associated with caveolin-scaffolding lipid raft domains. J Biol Chem 2000; 275: 11934–11942, [INFOTRIEVE], [CSA], [CROSSREF]
  • Singh B B, Liu X, Tang J, Zhu M X, Ambudkar I S. Calmodulin regulates Ca2+-dependent feedback inhibition of store-operated Ca2+ influx by interaction with a site in the C terminus of TrpC1. Mol Cell 2002; 9: 739–750, [INFOTRIEVE], [CSA], [CROSSREF]
  • Kiselyov K, Xu X, Mozhayeva G, Kuo T, Pessah I, Mignery G, Zhu X, Birnbaumer L, Muallem S. Functional interaction between InsP3 receptors and store-operated Htrp3 channels. Nature 1998; 396: 478–482, [INFOTRIEVE], [CSA], [CROSSREF]
  • Lintschinger B, Balzer-Geldsetzer M, Baskaran T, Graier W F, Romanin C, Zhu M X, Groschner K. Coassembly of Trp1 and Trp3 proteins generates diacylglycerol- and Ca2+-sensitive channels. J Biol Chem 2000; 275: 27799–27805, [INFOTRIEVE], [CSA]
  • Hofmann T, Schaefer M, Schultz G, Gudermann T. Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci USA 2002; 99: 7461–7466, [INFOTRIEVE], [CSA], [CROSSREF]
  • Groschner K, Hingel S, Lintschinger B, Balzer M, Romanin C, Zhu X, Schreibmayer W. Trp proteins form store-operated cation channels in human vascular endothelial cells. FEBS Lett 1998; 437: 101–106, [INFOTRIEVE], [CSA], [CROSSREF]
  • Paria B C, Malik A B, Kwiatek A M, Rahman A, May M J, Ghosh S, Tiruppathi C. Tumor necrosis factor-α induces nuclear factor-κ B-dependent TRPC1 expression in endothelial cells. J Biol Chem 2003; 278: 37195–37203, [INFOTRIEVE], [CSA], [CROSSREF]
  • Paria B C, Vogel S M, Ahmmed G U, Alamgir S, Shroff J, Malik A B, Tiruppathi C. Tumor necrosis factor-α -induced TRPC1 expression amplifies store-operated Ca2+ influx in endothelial permeability response. Am J Physiol Lung Cell Mol Physiol 2004; 287: L1303–L1313, [INFOTRIEVE], [CSA], [CROSSREF]
  • Chang A S, Chang S M, Garcia R L, Schiling W P. Concomitant and hormonally regulated expression of trp genes in bovine aortic endothelial cells. FEBS Lett 1997; 415: 335–340, [INFOTRIEVE], [CSA], [CROSSREF]
  • Freichel M, Suh S H, Pfeifer A, Schweig U, Trost C, Weißgerber P, Biel M, Philipp S, Freise D, Droogmans G, Hofmann F, Flockerzi V, Nilius B. Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4−/− mice. Nature Cell Biol 2001; 3: 121–127, [INFOTRIEVE], [CSA], [CROSSREF]
  • Brough G H, Wu S, Cioffi D, Moore T M, Li M, Dean N, Stevens T. Contribution of endogenously expressed Trp1 to a Ca2+–selective, store-operated Ca2+ entry pathway. FASEB J 2001; 15: 1727–1738, [INFOTRIEVE], [CSA], [CROSSREF]
  • Jho D, Mehta D, Ahmmed G, Gao X P, Tiruppathi C, Broman M, Malik A B. Angiopoietin-1 opposes VEGF-induced increase in endothelial permeability by inhibiting TRPC1-dependent Ca2+ influx. Circ Res 2005; 96: 1282–1290, [INFOTRIEVE], [CSA], [CROSSREF]
  • Fan J, Ye R, Malik A B. Transcriptional mechanisms of acute lung injury. Am J Physiol Lung Cell Mol Physiol 2001; 281: L1037–L1050, [INFOTRIEVE], [CSA]
  • Pocock T M, Foster R R, Bates D O. Evidence of a role for TRPC channels in VEGF-mediated increased vascular permeability in vivo. Am J Physiol Heart Circ Physiol 2004; 286: H1015–H1026, [INFOTRIEVE], [CSA], [CROSSREF]
  • Dietrich A, Mederos Y, Schnitzler M, Gollasch M, Gross V, Storch U, Dubrovska G, Obst M, Yildirim E, Salanova B, Kalwa H, Essin K, Pinkenburg O, Luft F C, Gudermann T, Birnbaumer L. Increased vascular smooth muscle contractility in TRPC6−/− mice. Mol Cell Biol 2005; 16: 6980–6989, [CSA], [CROSSREF]
  • Cortright D N, Szallasi A. Biochemical pharmacology of the vanilloid receptor TRPV1. Eur J Biochem 2004; 271: 1814–1819, [INFOTRIEVE], [CSA], [CROSSREF]
  • Geppetti P, Materazzi S, Nicoletti P. The transient receptor potential vanilloid: role in airway inflammation and disease. Eur J Pharmacol 2006; 533: 207–214, [INFOTRIEVE], [CSA], [CROSSREF]
  • Gazzieri D, Trevisani M, Tarantini F, Bechi P, Masotti G, Gensini G F, Castellani S, Marchionni N, Geppetti P, Harrison S. Ethanol dilates coronary arteries and increases coronary flow via transient receptor potential vanilloid1 and calcitonin gene-related peptide. Cardiovasc Res 2006; 70: 589–599, [INFOTRIEVE], [CSA], [CROSSREF]
  • Breyne J, Vanheel B. Methanandamide hyperpolarizes gastric arteries by stimulation of TRPV1 receptors on perivascular CGRP containing nerves. J Cardiovasc Pharmacol 2006; 47: 303–309, [INFOTRIEVE], [CSA], [CROSSREF]
  • Fantozzi I, Zhang S, Platoshyn O, Remillard C V, Cowling R T, Yuan J X. Hypoxia increases AP-1 binding activity by enhancing capacitative Ca2+ entry in human pulmonary artery endothelial cells. Am J Physiol Lung Cell Mol Physiol 2003; 285: L1233–L1245, [INFOTRIEVE], [CSA]
  • Golech S A, McCarron R M, Chen Y, Bembry J, Lenz F, Mechoulam R, Shohami E, Spatz M. Human brain endothelium: coexpression and function of vanilloid and endocannabinoid receptors. Brain Res Mol Brain Res 2004; 132: 87–92, [INFOTRIEVE], [CSA], [CROSSREF]
  • Keeble J E, Brain S D. Capsaicin-induced vasoconstriction in the mouse knee joint: a study using TRPV1 knockout mice. Neurosci Lett 2006; 401: 55–58, [INFOTRIEVE], [CSA], [CROSSREF]
  • Lee K M, Toscas K, Villereal M L. Inhibition of bradykinin- and thapsigargin-induced Ca2+ entry by tyrosine kinase inhibitors. J Biol Chem 1993; 268: 9945–9948, [INFOTRIEVE], [CSA]
  • Babnigg G, Bowersox S R, Villereal M L. The role of pp60c-src in the regulation of calcium entry via store-operated calcium channels. J Biol Chem 1997; 272: 29434–29437, [INFOTRIEVE], [CSA], [CROSSREF]
  • Vazquez G, Wedel B J, Kawasaki B T, Bird G SJ, Putney J W, Jr. Obligatory role of Src kinase in the signaling mechanism for TRPC3 cation channels. J Biol Chem 2004; 279: 40521–40528, [INFOTRIEVE], [CSA], [CROSSREF]
  • Tiruppathi C, Naqvi T, Sandoval R, Mehta D, Malik A B. Synergistic effects of tumor necrosis factor-α and thrombin in increasing endothelial permeability. Am J Physiol Lung Cell Mol Physiol 2001; 281: L958–L968, [INFOTRIEVE], [CSA]
  • Sandoval R, Paria B C, Malik A B, Tiruppathi C. Interaction of Src with transient receptor potential-1 channel regulates thrombin-stimulated Ca2+ influx in human umbilical vein endothelial cells. FASEB J 2002; 16: A870, (Abstr)[CSA]
  • Ahmmed G U, Mehta D, Vogel S, Holinstat M, Paria B C, Tiruppathi C, Malik A B. Protein kinase C α phosphorylates the TRPC1 channel and regulates store-operated Ca2+ entry in endothelial cells. J Biol Chem 2004; 279: 20941–20949, [INFOTRIEVE], [CSA], [CROSSREF]
  • Kwan H Y, Huang Y, Yao X. Regulation of canonical transient receptor potential isoform 3 (TRPC3) channel by protein kinase G. Proc Natl Acad Sci USA 2004; 101: 2625–2630, [INFOTRIEVE], [CSA], [CROSSREF]
  • Hassock S R, Zhu M X, Trost C, Flockerzi V, Authi K S. Expression and role of TRPC proteins in human platelets: evidence that TRPC6 forms the store-independent calcium entry channel. Blood 2002; 100: 2801–2811, [INFOTRIEVE], [CSA], [CROSSREF]
  • Mehta D, Ahmmed G U, Paria B C, Holinstat M, Voyno-Yasenetskaya T, Tiruppathi C, Minshall R D, Malik A B. RhoA interaction with inositol 1,4,5-trisphosphate receptor and transient receptor potential channel-1 regulates Ca2+ entry. Role in signaling increased endothelial permeability. J Biol Chem 2003; 278: 33492–33500, [INFOTRIEVE], [CSA], [CROSSREF]
  • Wu S, Sangerman J, Li M, Brough G H, Goodman S R, Stevens T. Essential control of an endothelial cell ISOC by the spectrin membrane skeleton. J Biol Chem 2001; 154: 1225–1233, [CSA]
  • Cioffi D L, Wu S, Alexeyev M, Goodman S R, Zhu M X, Stevens T. Activation of the endothelial store-operated ISOC Ca2+ channel requires interaction of protein 4.1 with TRPC4. Circ Res 2005; 97: 1164–1172, [INFOTRIEVE], [CSA], [CROSSREF]
  • Schlegel A, Lisanti M P. Caveolae and their coat proteins, the caveolins: from electron microscopic novelty to biological launching pad. J Cell Physiol 2001; 186: 329–337, [INFOTRIEVE], [CSA], [CROSSREF]
  • Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft F C, Schedl A, Haller H, Kurzchalia T V. Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 2001; 293: 2449–2452, [INFOTRIEVE], [CSA], [CROSSREF]
  • Minshall R D, Tiruppathi C, Vogel S M, Niles W D, Gilchrist A, Hamm H E, Malik A B. Endothelial cell-surface gp60 activates vesicle formation and trafficking via Gi-coupled Src kinase signaling pathway. J Cell Biol 2000; 150: 1057–1070, [INFOTRIEVE], [CSA], [CROSSREF]
  • Oh P, Schnitzer J E. Segregation of heterotrimeric G proteins in cell surface microdomains. Gq binds caveolin to concentrate in caveolae, whereas Gi and Gs target lipid rafts by default. Mol Biol Cell 2001; 12: 685–698, [INFOTRIEVE], [CSA]
  • Michel J B, Feron O, Sacks D, Michel T. Reciprocal regulation of endothelial nitric-oxide synthase by Ca2+-calmodulin and caveolin. J Biol Chem 1997; 272: 15583–15586, [INFOTRIEVE], [CSA], [CROSSREF]
  • Bucci M, Gratton J P, Rudic R D, Acevedo L, Roviezzo F, Cirino G, Sessa W C. In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nat Med 2000; 6: 1362–1367, [INFOTRIEVE], [CSA], [CROSSREF]
  • Isshiki M, Ando J, Korenaga R, Kogo H, Fujimoto T, Fujita T, Kamiya A. Endothelial Ca2+ waves preferentially originate at specific loci in caveolin-rich cell edges. Proc Natl Acad Sci USA 1998; 95: 5009–5014, [INFOTRIEVE], [CSA], [CROSSREF]
  • Isshiki M, Ying Y S, Fujita T, Anderson R G. A molecular sensor detects signal transduction from caveolae in living cells. J Biol Chem 2002; 277: 43389–43398, [INFOTRIEVE], [CSA], [CROSSREF]
  • Bergdahl A, Gomez M F, Dreja K, Xu S Z, Adner M, Beech D J, Broman J, Hellstrand P, Sward K. Cholesterol depletion impairs vascular reactivity to endothelin-1 by reducing store-operated Ca2+ entry dependent on TRPC1. Circ Res 2003; 93: 839–847, [INFOTRIEVE], [CSA], [CROSSREF]
  • Brazer S C, Singh B B, Liu X, Swaim W, Ambudkar I S. Caveolin–1 contributes to assembly of store-operated Ca2+ influx channels by regulating plasma membrane localization of TRPC1. J Biol Chem 2003; 278: 27208–27215, [INFOTRIEVE], [CSA], [CROSSREF]
  • Brownlow S L, Harper A GS, Harper M T, Sage S O. A role for hTRPC1 and lipid raft domains in store-mediated calcium entry in human platelets. Cell Calcium 2004; 35: 107–113, [INFOTRIEVE], [CSA], [CROSSREF]
  • Isshiki M, Anderson R GW. Function of caveolae in Ca2+ entry and Ca2+-dependent signal transduction. Traffic 2003; 4: 717–723, [INFOTRIEVE], [CSA], [CROSSREF]
  • Kwiatek A M, Minshall R D, Cool R D, Skidgel R A, Malik A B, Tiruppathi C. Caveolin-1 regulates store-operated Ca2+ influx by binding of its scaffolding domain to TRPC1 in endothelial cells. Mol Pharmacol 2006; 70: 1174–1183, [INFOTRIEVE], [CSA], [CROSSREF]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.