193
Views
29
CrossRef citations to date
0
Altmetric
Review Article

Regulation of Sodium and Calcium Channels by Signaling Complexes

, , &
Pages 577-598 | Published online: 10 Oct 2008

REFERENCES

  • Catterall W A. Structure and regulation of voltage-gated calcium channels. Annu Rev Cell Dev Bio 2000; 16: 521–555
  • Cantrell A R, Catterall W A. Neuromodulation of Na+ channels: an unexpected form of cellular plasticity. Nat Rev Neurosci 2001; 2: 397–407
  • Pawson T, Scott J D. Signaling through scaffold, anchoring, and adaptor proteins. Science 1997; 278: 2075–2080
  • Hodgkin A L, Huxley A F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 1952; 117: 500–544
  • Catterall W A. From ionic currents to molecular mechanisms: The structure and function of voltage-gated sodium channels. Neuron 2000; 26: 13–25
  • Costa M R, Casnellie J E, Catterall W A. Selective phosphorylation of the alpha subunit of the sodium channel by cAMP-dependent protein kinase. J Biol Chem 1982; 257: 7918–7921
  • Murphy B J, Rossie S, De Jongh K S, Catterall W A. Identification of the sites of selective phosphorylation and dephosphorylation of the rat brain Na+ channel α subunit by cAMP-dependent protein kinase and phosphoprotein phosphatases. J Biol Chem 1993; 268: 27355–27362
  • Costa M R, Catterall W A. Cyclic AMP-dependent phosphorylation of the alpha subunit of the sodium channel in synaptic nerve ending particles. J Biol Chem 1984; 259: 8210–8218
  • Rossie S, Catterall W A. Cyclic-AMP-dependent phosphorylation of voltage-sensitive sodium channels in primary cultures of rat brain neurons. J Biol Chem 1987; 262: 12735–12744
  • Rossie S, Catterall W A. Phosphorylation of the alpha subunit of rat brain sodium channels by cAMP-dependent protein kinase at a new site containing Ser686 and Ser687. J Biol Chem 1989; 264: 14220–14224
  • Rossie S, Gordon D, Catterall W A. Identification of an intracellular domain of the sodium channel having multiple cAMP-dependent phosphorylation sites. J Biol Chem 1987; 262: 17530–17535
  • Smith R D, Goldin A L. Phosphorylation of brain sodium channels in the I-II linker modulates channel function in Xenopus oocytes. J Neurosci 1996; 16: 1965–1974
  • Li M, West J W, Lai Y, Scheuer T, Catterall W A. Functional modulation of brain sodium channels by cAMP-dependent phosphorylation. Neuron 1992; 8: 1151–1159
  • Cantrell A R, Scheuer T, Catterall W A. Dopaminergic modulation of sodium current in hippocampal neurons via cAMP-dependent phosphorylation of specific sites in the sodium channel α subunit. J Neurosci 1997; 17: 7330–7338
  • Smith R D, Goldin A L. Phosphorylation at a single site in the rat brain sodium channel is necessary and sufficient for current reduction by protein kinase A. J Neurosci 1997; 17: 6086–6093
  • Li M, West J W, Numann R, Murphy B J, Scheuer T, Catterall W A. Convergent regulation of sodium channels by protein kinase C and cAMP-dependent protein kinase. Science 1993; 261: 1439–1442
  • Cantrell A R, Scheuer T, Catterall W A. Voltage-dependent modulation of brain Na+ channels by D1-like dopamine receptors in rat hippocampal neurons. J Neurosci 1999; 19: 5301–5310
  • Cantrell A R, Tibbs V C, Yu F H, Murphy B J, Sharp E M, Qu Y, Catterall W A, Scheuer T. Molecular mechanism of convergent regulation of brain Na+ channels by protein kinase C and protein kinase A anchored to AKAP-15. Mol Cell Neurosci 2002; 21: 63–80
  • Cantrell A R, Scheuer T, Catterall W A. Dopamine modulates sodium current via PKA activation in rat hippocampal neurons. Soc Neurosci Abstr 1996; 22: 57
  • Carr D B, Day M, Cantrell A R, Held J, Scheuer T, Catterall W A, Surmeier D J. Transmitter modulation of slow, activity-dependent alterations in sodium channel availability endows neurons with a novel form of cellular plasticity. Neuron 2003; 39: 793–806
  • Chen Y, Yu F H, Surmeier D J, Scheuer T, Catterall W A. Neuromodulation of Na+ channel slow inactivation via cAMP-dependent protein kinase and protein kinase C. Neuron 2006; 49: 409–420
  • Scott J D, McCartney S. Localization of A-kinase through anchoring proteins. Mol Endocrinol 1994; 8: 5–11
  • Rubin C S. A kinase anchor proteins and the intracellular targeting of signals carried by cyclic AMP. Biochim Biophys Acta 1994; 1224: 467–479
  • Newlon M G, Roy M, Morikis D, Carr D W, Westphal R, Scott J D, Jennings P A. A novel mechanism of PKA anchoring revealed by solution structures of anchoring complexes. EMBO J 2001; 20: 1651–1662
  • Newlon M G, Roy M, Hausken Z E, Scott J D, Jennings P A. The A-kinase anchoring domain of type II alpha cAMP-dependent protein kinase is highly helical. J Biol Chem 1997; 272: 23637–23644
  • Cantrell A R, Tibbs V C, Westenbroek R E, Scheuer T, Catterall W A. Dopaminergic modulation of voltage-gated Na+ current in rat hippocampal neurons requires anchoring of cAMP-dependent protein kinase. J Neurosci 1999; 19: RC21
  • Bajjalieh S M, Scheller R H. The biochemistry of neurotransmitter secretion. J Biol Chem 1995; 270: 1971–1974
  • Sudhof T C. The synaptic vesicle cycle: A cascade of protein-protein interactions. Nature 1995; 375: 645–653
  • Sheng Z H, Rettig J, Takahashi M, Catterall W A. Identification of a syntaxin-binding site on N-type calcium channels. Neuron 1994; 13: 1303–1313
  • Rettig J, Sheng Z H, Kim D K, Hodson C D, Snutch T P, Catterall W A. Isoform-specific interaction of the α1A subunits of brain Ca2+channels with the presynaptic proteins syntaxin and SNAP-25. Proc Natl Acad Sci USA 1996; 93: 7363–7368
  • Sheng Z H, Rettig J, Cook T, Catterall W A. Calcium-dependent interaction of N-type calcium channels with the synaptic core-complex. Nature 1996; 379: 451–454
  • Yokoyama C T, Sheng Z H, Catterall W A. Phosphorylation of the synaptic protein interaction site on N-type calcium channels inhibits interactions with SNARE proteins. J Neurosci 1997; 17: 6929–6938
  • Yokoyama C T, Myers S J, Fu J, Mockus S M, Scheuer T, Catterall W A. Mechanism of SNARE protein binding and regulation of CaV2 channels by phosphorylation of the synaptic protein interaction site. Mol Cell Neurosci 2005; 28: 1–17
  • Charvin N, Lévêque C, Walker D, Berton F, Raymond C, Kataoka M, Shoji-Kasai Y, Takahashi M, De Waard M, Seagar M J. Direct interaction of the calcium sensor protein synaptotagmin I with a cytoplasmic domain of the α1Asubunit of the P/Q-type calcium channel. EMBO J 1997; 16: 4591–4596
  • Sheng Z H, Yokoyama C, Catterall W A. Interaction of the synprint site of N-type Ca2+ channels with the C2B domain of synaptotagmin I. Proc Natl Acad Sci USA 1997; 94: 5405–5410
  • Wiser O, Tobi D, Trus M, Atlas D. Synaptotagmin restores kinetic properties of a syntaxin-associated N-type voltage sensitive calcium channel. FEBS Lett 1997; 404: 203–207
  • Rettig J, Heinemann C, Ashery U, Sheng Z H, Yokoyama C T, Catterall W A, Neher E. Alteration of Ca2+ dependence of neurotransmitter release by disruption of Ca2+ channel/syntaxin interaction. J Neurosci 1997; 17: 6647–6656
  • Mochida S, Sheng Z H, Baker C, Kobayashi H, Catterall W A. Inhibition of neurotransmission by peptides containing the synaptic protein interaction site of N-type Ca2+ channels. Neuron 1996; 17: 781–788
  • Bezprozvanny I, Scheller R H, Tsien R W. Functional impact of syntaxin on gating of N-type and Q-type calcium channels. Nature 1995; 378: 623–626
  • Wiser O, Bennett M K, Atlas D. Functional interaction of syntaxin and SNAP-25 with voltage-sensitive L-and N-type Ca2+ channels. EMBO J 1996; 15: 4100–4110
  • Tobi D, Wiser O, Trus M, Atlas D. N-type voltage-sensitive calcium channel interacts with syntaxin, synaptotagmin and SNAP-25 in a multiprotein complex. Receptors Channels 1999; 6: 89–98
  • Sakurai T, Hell J W, Woppmann A, Miljanich G P, Catterall W A. Immunochemical identification and differential phosphorylation of alternatively spliced forms of the α1A subunit of brain calcium channels. J Biol Chem 1995; 270: 21234–21242
  • Starr T VB, Prystay W, Snutch T P. Primary structure of a calcium channel that is highly expressed in the rat cerebellum. Proc Natl Acad Sci USA 1991; 88: 5621–5625
  • Kim D K, Catterall W A. Ca2+-dependent and-independent interactions of the isoforms of the α1A subunit of brain Ca2+ channels with presynaptic SNARE proteins. Proc Natl Acad Sci USA 1997; 94: 14782–14786
  • Zhong H, Yokoyama C, Scheuer T, Catterall W A. Reciprocal regulation of P/Q-type Ca2+ channels by SNAP-25, syntaxin and synaptotagmin. Nat Neurosci 1999; 2: 939–941
  • Hille B. Modulation of ion-channel function by G-protein-coupled receptors. Trends Neurosci 1994; 17: 531–536
  • Ikeda S R, Dunlap K. Voltage-dependent modulation of N-type calcium channels: role of G protein subunits. Adv Second Messenger Phosphoprotein Res 1999; 33: 131–151
  • Jones L P, Patil P G, Snutch T P, Yue D T. G-protein modulation of N-type calcium channel gating current in human embryonic kidney cells (HEK 293). J Physiol (Lond) 1997; 498: 601–610
  • Bean B P. Neurotransmitter inhibition of neuronal calcium currents by changes in channel voltage dependence. Nature 1989; 340: 153–156
  • Marchetti C, Carbone E, Lux H D. Effects of dopamine and noradrenaline on Ca channels of cultured sensory and sympathetic neurons of chick. Pflugers Arch 1986; 406: 104–111
  • Herlitze S, Zhong H, Scheuer T, Catterall W A. Allosteric modulation of Ca2+ channels by G proteins, voltage-dependent facilitation, protein kinase C, and Ca(v)beta subunits. Proc Natl Acad Sci USA 2001; 98: 4699–4704
  • Zhong H, Li B, Scheuer T, Catterall W A. Control of gating mode by a single amino acid residue in transmembrane segment IS3 of the N-type Ca2+ channel. Proc Natl Acad Sci USA 2001; 98: 4705–4709
  • Herlitze S, Garcia D E, Mackie K, Hille B, Scheuer T, Catterall W A. Modulation of Ca2+ channels by G protein β γ subunits. Nature 1996; 380: 258–262
  • Ikeda S R. Voltage-dependent modulation of N-type calcium channels by G-protein β γ subunits. Nature 1996; 380: 255–258
  • De Waard M, Liu H Y, Walker D, Scott V ES, Gurnett C A, Campbell K P. Direct binding of G-protein β γ complex to voltage-dependent calcium channels. Nature 1997; 385: 446–450
  • Zamponi G W, Bourinet E, Nelson D, Nargeot J, Snutch T P. Crosstalk between G proteins and protein kinase C mediated by the calcium channel α1 subunit. Nature 1997; 385: 442–446
  • Herlitze S, Hockerman G H, Scheuer T, Catterall W A. Molecular determinants of inactivation and G protein modulation in the intracelular loop connecting domains I and II of the calcium channel α1Asubunit. Proc Natl Acad Sci USA 1997; 94: 1512–1516
  • Garcia D E, Li B, Garcia-Ferreiro R E, Hernández-Ochoa E O, Yan K, Gautam N, Catterall W A, Mackie K, Hille B. G-protein β-subunit specificity in the fast membrane-delimited inhibition of Ca2+ channels. J Neurosci 1998; 18: 9163–9170
  • Zhang J F, Ellinor P T, Aldrich R W, Tsien R W. Multiple structural elements in voltage-dependent Ca2+ channels support their inhibition by G proteins. Neuron 1996; 17: 991–1003
  • Qin N, Platano D, Olcese R, Stefani E, Birnbaumer L. Direct interaction of Gβ γ with a C-terminal Gβ γ-binding domain of the Ca2+ channel α1 subunit is responsible for channel inhibition by G protein-coupled receptors. Proc Natl Acad Sci USA 1997; 94: 8866–8871
  • Page K M, Stephens G J, Berrow N S, Dolphin A C. The intracellular loop between domains I and II of the B-type calcium channel confers aspects of G-protein sensitivity to the E-type calcium channel. J Neurosci 1997; 17: 1330–1338
  • Page K M, Cantí C, Stephens G J, Berrow N S, Dolphin A C. Identification of the amino terminus of neuronal Ca2+ channel α1 subunits α1B and α1E as an essential determinant of G-protein modulation. J Neurosci 1998; 18: 4815–4824
  • Canti C, Page K M, Stephens G J, Dolphin A C. Identification of residues in the N terminus of α1B critical for inhibition of the voltage-dependent calcium channel by Gβ γ. J Neurosci 1999; 19: 6855–6864
  • Li B, Zhong H, Scheuer T, Catterall W A. Functional role of a C-terminal Gβ γ-binding domain of Ca(v)2.2 channels. Mol Pharmacol 2004; 66: 761–769
  • Swartz K J, Merritt A, Bean B P, Lovinger D M. Protein kinase C modulates glutamate receptor inhibition of Ca2+ channels and synaptic transmission. Nature 1993; 361: 165–168
  • Swartz K J. Modulation of Ca2+ channels by protein kinase C in rat central and peripheral neurons: Disruption of G protein-mediated inhibition. Neuron 1993; 11: 305–320
  • Branchaw J L, Banks M I, Jackson M B. Ca2+-and voltage-dependent inactivation of Ca2+ channels in nerve terminals of the neurohypophysis. J Neurosci 1997; 17: 5772–5781
  • Forsythe I D, Tsujimoto T, Barnes-Davies M, Cuttle M F, Takahashi T. Inactivation of presynaptic calcium current contributes to synaptic depression at a fast central synapse. Neuron 1998; 20: 797–807
  • Borst J G, Sakmann B. Facilitation of presynaptic calcium currents in the rat brainstem. J Physiol 1998; 513: 149–155
  • Cuttle M F, Tsujimoto T, Forsythe I D, Takahashi T. Facilitation of the presynaptic calcium current at an auditory synapse in rat brainstem. J Physiol 1998; 512: 723–729
  • Lee A, Wong S T, Gallagher D, Li B, Storm D R, Scheuer T, Catterall W A. Ca2+/calmodulin binds to and modulates P/Q-type calcium channels. Nature 1999; 399: 155–159
  • Lee A, Scheuer T, Catterall W A. Ca2+-calmodulin dependent facilitation and inactivation of P/Q-type Ca2+ channels. J Neurosci 2000; 20: 6830–6838
  • Zühlke R D, Pitt G S, Deisseroth K, Tsien R W, Reuter H. Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature 1999; 399: 159–162
  • Qin N, Olcese R, Bransby M, Lin T, Birnbaumer L. Ca2+ induced inhibition of the cardiac Ca2+ channel depends on calmodulin. Proc Natl Acad Sci USA 1999; 96: 2435–2438
  • Peterson B Z, DeMaria C D, Yue D T. Calmodulin is the Ca2+ sensor for Ca2+-dependent inactivation of L-type calcium channels. Neuron 1999; 22: 549–558
  • Lee A, Zhou H, Scheuer T, Catterall W A. Molecular determinants of Ca2+/calmodulin-dependent regulation of Ca(v)2.1 channels. Proc Natl Acad Sci USA 2003; 100: 16059–16064
  • DeMaria C D, Soong T W, Alseikhan B A, Alvania R S, Yue D T. Calmodulin bifurcates the local Ca2+ signal that modulates P/Q-type Ca2+ channels. Nature 2001; 411: 484–489
  • Erickson M G, Alseikhan B A, Peterson B Z, Yue D T. Preassociation of calmodulin with voltage-gated Ca2+ channels revealed by FRET in single living cells. Neuron 2001; 31: 973–985
  • Haeseleer F, Palczewski K. Calmodulin and Ca2+-binding proteins (CaBPs): Variations on a theme. Adv Exp Med Biol 2002; 514: 303–317
  • Lee A, Westenbroek R E, Haeseleer F, Palczewski K, Scheuer T, Catterall W A. Differential modulation of CaV2.1 channels by calmodulin and Ca2+-binding protein 1. Nat Neurosci 2002; 5: 210–217
  • Few A P, Lautermilch N J, Westenbroek R E, Scheuer T, Catterall W A. Differential regulation of CaV2.1 channels by calcium-binding protein 1 and visinin-like protein-2 requires N-terminal myristoylation. J Neurosci 2005; 25: 7071–7080
  • Tsujimoto T, Jeromin A, Saitoh N, Roder J C, Takahashi T. Neuronal calcium sensor 1 and activity-dependent facilitation of P/Q-type calcium currents at presynaptic nerve terminals. Science 2002; 295: 2276–2279
  • Lautermilch N J, Few A P, Scheuer T, Catterall W A. Modulation of CaV2.1 channels by the neuronal calcium-binding protein visinin-like protein-2. J Neurosci 2005; 25: 7062–7070
  • Curtis B M, Catterall W A. Purification of the calcium antagonist receptor of the voltage-sensitive calcium channel from skeletal muscle transverse tubules. Biochem 1984; 23: 2113–2118
  • Flockerzi V, Oeken H J, Hofmann F. Purification of a functional receptor for calcium channel blockers from rabbit skeletal muscle microsomes. Eur J Biochem 1986; 161: 217–224
  • Takahashi M, Seagar M J, Jones J F, Reber B F, Catterall W A. Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. Proc Natl Acad Sci USA 1987; 84: 5478–5482
  • Curtis B M, Catterall W A. Phosphorylation of the calcium antagonist receptor of the voltage-sensitive calcium channel by cAMP-dependent protein kinase. Proc Natl Acad Sci USA 1985; 82: 2528–2532
  • Flockerzi V, Oeken H J, Hofmann F, Pelzer D, Cavalie A, Trautwein W. Purified dihydropyridine-binding site from skeletal muscle t-tubules is a functional calcium channel. Nature 1986; 323: 66–68
  • De Jongh K S, Merrick D K, Catterall W A. Subunits of purified calcium channels: a 212-kDa form of α1 and partial amino acid sequence of a phosphorylation site of an independent β subunit. Proc Natl Acad Sci USA 1989; 86: 8585–8589
  • De Jongh K S, Warner C, Colvin A A, Catterall W A. Characterization of the two size forms of the α1 subunit of skeletal muscle L-type calcium channels. Proc Natl Acad Sci USA 1991; 88: 10778–10782
  • Rotman E I, De Jongh K S, Florio V, Lai Y, Catterall W A. Specific phosphorylation of a COOH-terminal site on the full-length form of the α1 subunit of the skeletal muscle calcium channel by cAMP-dependent protein kinase. J Biol Chem 1992; 267: 16100–16105
  • Rotman E I, Murphy B J, Catterall W A. Sites of selective cAMP-dependent phosphorylation of the L-type calcium channel α 1 subunit from intact rabbit skeletal muscle myotubes. J Biol Chem 1995; 270: 16371–16377
  • Sculptoreanu A, Scheuer T, Catterall W A. Voltage-dependent potentiation of L-type Ca2+ channels due to phosphorylation by cAMP-dependent protein kinase. Nature 1993; 364: 240–243
  • Johnson B D, Brousal J P, Peterson B Z, Gallombardo P A, Hockerman G H, Lai Y, Scheuer T, Catterall W A. Modulation of the cloned skeletal muscle L-type Ca2+ channel by anchored cAMP-dependent protein kinase. J Neurosci 1997; 17: 1243–1255
  • Johnson B D, Scheuer T, Catterall W A. Voltage-dependent potentiation of L-type Ca2+ channels in skeletal muscle cells requires anchored cAMP-dependent protein kinase. Proc Natl Acad Sci USA 1994; 91: 11492–11496
  • Gray P C, Tibbs V C, Catterall W A, Murphy B J. Identification of a 15-kDa cAMP-dependent protein kinase-anchoring protein associated with skeletal muscle L-type calcium channels. J Biol Chem 1997; 272: 6297–6302
  • Gray P C, Johnson B D, Westenbroek R E, Hays L G, Yates J R, 3rd, Scheuer T, Catterall W A, Murphy B J. Primary structure and function of an A kinase anchoring protein associated with calcium channels. Neuron 1998; 20: 1017–1026
  • Fraser I DC, Tavalin S J, Lester L B, Langeberg L K, Westphal A M, Dean R A, Marrion N V, Scott J D. A novel lipid-anchored A-kinase anchoring protein facilitates cAMP-responsive membrane events. EMBO J 1998; 17: 2261–2272
  • Hulme J T, Ahn M, Hauschka S D, Scheuer T, Catterall W A. A novel leucine zipper targets AKAP15 and cyclic AMP-dependent protein kinase to the C terminus of the skeletal muscle Ca2+ channel and modulates its function. J Biol Chem 2002; 277: 4079–4087
  • Reuter H. Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature 1983; 301: 569–574
  • Tsien R W, Bean B P, Hess P, Lansman J B, Nilius B, Nowycky M C. Mechanisms of calcium channel modulation by β-adrenergic agents and dihydropyridine calcium agonists. J Mol Cell Cardiol 1986; 18: 691–710
  • Hell J W, Yokoyama C T, Wong S T, Warner C, Snutch T P, Catterall W A. Differential phosphorylation of two size forms of the neuronal class C L-type calcium channel α1 subunit. J Biol Chem 1993; 268: 19451–19457
  • De Jongh K S, Murphy B J, Colvin A A, Hell J W, Takahashi M, Catterall W A. Specific phosphorylation of a site in the full-length form of the α 1 subunit of the cardiac L-type calcium channel by cAMP-dependent protein kinase. Biochemistry 1996; 35: 10392–10402
  • Puri T S, Gerhardstein B L, Zhao X L, Ladner M B, Hosey M M. Differential effects of subunit interactions on protein kinase A-and C-mediated phosphorylation of L-type calcium channels. Biochemistry 1997; 36: 9605–9615
  • Haase H, Bartel S, Karczewski P, Morano I, Krause E G. In-vivo phosphorylation of the cardiac L-type calcium channel beta-subunit in response to catecholamines. Mol Cell Biochem 1996; 163–164: 99–106
  • Mitterdorfer J, Froschmayr M, Grabner M, Moebius F F, Glossmann H, Striessnig J. Identification of PK-A phosphorylation sites in the carboxyl terminus of L-type calcium channel α1 subunits. Biochemistry 1996; 35: 9400–9406
  • Reuter H, Scholz H. The regulation of calcium conductance of cardiac muscle by adrenaline. J Physiol 1977; 264: 49–62
  • Tsien R W. Adrenaline-like effects of intracellular iontophoresis of cyclic AMP in cardiac Purkinje fibres. Nature New Biol 1973; 245: 120–122
  • Osterrieder W, Brum G, Hescheler J, Trautwein W, Flockerzi V, Hofmann F. Injection of subunits of cyclic AMP-dependent protein kinase into cardiac myocytes modulates Ca2+ current. Nature 1982; 298: 576–578
  • McDonald T F, Pelzer S, Trautwein W, Pelzer D J. Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. Physiol Rev 1994; 74: 365–507
  • Gao T, Yatani A, Dell'Acqua M L, Sako H, Green S A, Dascal N, Scott J D, Hosey M M. cAMP-dependent regulation of cardiac L-type Ca2+ channels requires membrane targeting of PKA and phosphorylation of channel subunits. Neuron 1997; 19: 185–196
  • Hulme J T, Lin T W, Westenbroek R E, Scheuer T, Catterall W A. Beta-adrenergic regulation requires direct anchoring of PKA to cardiac CaV1.2 channels via a leucine zipper interaction with A kinase-anchoring protein 15. Proc Natl Acad Sci USA 2003; 100: 13093–13098
  • Landschulz W H, Johnson P F, McKnight S L. The leucine zipper: A hypothetical structure common to a new class of DNA binding proteins. Science 1988; 240: 1759–1764
  • Marx S O, Reiken S, Hisamatsu Y, Gaburjakova M, Gaburjakova J, Yang Y M, Rosemblit N, Marks A R. Phosphorylation-dependent regulation of ryanodine receptors: A novel role for leucine/isoleucine zippers. J Cell Biol 2001; 153: 699–708
  • Marx S O, Kurokawa J, Reiken S, Motoike H, D'Armiento J, Marks A R, Kass R S. Requirement of a macromolecular signaling complex for beta adrenergic receptor modulation of the KCNQ1-KCNE1 potassium channel. Science 2002; 295: 496–499
  • Hulme J T, Konoki K, Lin T W, Gritsenko M A, Camp D G, 2nd, Bigelow D J, Catterall W A. Sites of proteolytic processing and noncovalent association of the distal C-terminal domain of CaV1.1 channels in skeletal muscle. Proc Natl Acad Sci USA 2005; 102: 5274–5279
  • Gao T, Cuadra A E, Ma H, Bunemann M, Gerhardstein B L, Cheng T, Eick R T, Hosey M M. C-terminal fragments of the α1C (CaV1.2) subunit associate with and regulate L-type calcium channels containing C-terminal-truncated α1C subunits. J Biol Chem 2001; 276: 21089–21097
  • Gerhardstein B L, Gao T, Bunemann M, Puri T S, Adair A, Ma H, Hosey M M. Proteolytic processing of the C terminus of the α 1C subunit of L-type calcium channels and the role of a proline-rich domain in membrane tethering of proteolytic fragments. J Biol Chem 2000; 275: 8556–8563
  • Hulme J T, Yarov-Yarovoy V, Lin T W, Scheuer T, Catterall W A. Autoinhibitory control of the CaV1.2 channel by its proteolytically processed distal C-terminal domain. J Physiol 2006, in press
  • Wei X, Neely A, Lacerda A E, Olcese R, Stefani E, Perez-Reyes E, Birnbaumer L. Modification of Ca2+ channel activity by deletions at the carboxyl terminus of the cardiac α1 subunit. J Biol Chem 1994; 269: 1635–1640
  • Anderson M E, Braun A P, Schulman H, Premack B A. Multifunctional Ca2+/calmodulin-dependent protein kinase mediates Ca2+-induced enhancement of the L-type Ca2+ current in rabbit ventricular myocytes. Circ Res 1994; 75: 854–861
  • Hudmon A, Schulman H, Kim J, Maltez J M, Tsien R W, Pitt G S. CaMKII tethers to L-type Ca2+ channels, establishing a local and dedicated integrator of Ca2+ signals for facilitation. J Cell Biol 2005; 171: 537–547

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.