83
Views
9
CrossRef citations to date
0
Altmetric
Review Article

Recognition of Neurohormones of the NPY Family by Their Receptors

, , , , &
Pages 487-504 | Published online: 10 Oct 2008

REFERENCES

  • Palczewski K, Kumasaka T, Hori T, Behnke C A, Motoshima H, Fox B A, Le Trong I, Teller D C, Okada T, Stenkamp R E, Yamamoto M, Miyano M. Crystal structure of rhodopsin: A G protein-coupled receptor. Science 2000; 289: 739–745
  • Flower D R. Modelling G-protein-coupled receptors for drug design. Biochim Biophys Acta 1999; 1422: 207–234
  • Rader A J, Anderson G, Isin B, Khorana H G, Bahar I, Klein-Seetharaman J. Identification of core amino acids stabilizing rhodopsin. Proc Natl Acad Sci USA 2004; 101: 7246–7251
  • Henry L K, Khare S, Son C, Babu V V, Naider F, Becker J M. Identification of a contact region between the tridecapeptide alpha-factor mating pheromone of Saccharomyces cerevisiae and its G protein-coupled receptor by photoaffinity labeling. Biochemistry 2002; 41: 6128–6139
  • Rihakova L, Deraet M, Auger-Messier M, Perodin J, Boucard A A, Guillemette G, Leduc R, Lavigne P, Escher E. Methionine proximity assay, a novel method for exploring peptide ligand-receptor interaction. J Recept Signal Transduct 2002; 22: 297–313
  • Altenbach C, Marti T, Khorana H G, Hubbell W L. Transmembrane protein structure: Spin labeling of bacteriorhodopsin mutants. Science 1990; 248: 1088–1092
  • Kaiser E T, Kezdy F J. Secondary structures of proteins and peptides in amphiphilic environments. Proc Natl Acad Sci USA 1983; 80: 1137–1143
  • Kaiser E T, Kezdy F J. Amphiphilic secondary structure: design of peptide hormones. Science 1984; 223: 249–255
  • Sargent D F, Schwyzer R. Membrane lipid phase as catalyst for peptide-receptor interactions. Proc Natl Acad Sci USA 1986; 83: 5774–5778
  • Schwyzer R. Molecular mechanism of opioid receptor selection. Biochemistry 1986; 25: 6335–6342
  • Schwyzer R. In search of the “bio-active conformation”—is it induced by the target cell membrane?. J Mol Recognit 1995; 8: 3–8
  • Moroder L, Romano R, Guba W, Mierke D F, Kessler H, Delporte C, Winand J, Christophe J. New evidence for a membrane-bound pathway in hormone receptor binding. Biochemistry 1993; 32: 13551–13559
  • Bader R, Zerbe O. Are hormones from the neuropeptide Y family recognized by their receptors from the membrane-bound state?. ChemBioChem 2005; 6: 1520–1534
  • Lerch M, Kamimori H, Folkers G, Aguilar M-I, Beck-Sickinger A G, Zerbe O. Strongly altered receptor binding properties in PP and NPY chimera are accompanied by changes in structure and membrane binding. Biochemistry 2005; 44: 9255–9264
  • Bader R, Rytz G, Lerch M, Beck-Sickinger A G, Zerbe O. Key motif to gain selectivity at the neuropeptide Y5-receptor: Structure and dynamics of micelle-bound [Ala31, Pro32]-NPY. Biochemistry 2002; 41: 8031–8042
  • Lerch M, Mayrhofer M, Zerbe O. Structural similarities of micelle-bound peptide YY (PYY) and neuropeptide Y (NPY) are related to their affinity profiles at the Y receptors. J Mol Biol 2004; 339: 1153–1168
  • Lerch M, Gafner V, Bader R, Christen B, Folkers G, Zerbe O. Bovine pancreatic polypeptide (bPP) undergoes significant changes in conformation and dynamics upon binding to DPC micelles. J Mol Biol 2002; 322: 1117–1133
  • Bader R, Bettio A, Beck-Sickinger A G, Zerbe O. Structure and dynamics of micelle-bound neuropeptide Y: Comparison with unligated NPY and implications for receptor selection. J Mol Biol 2001; 305: 307–392
  • Larhammar D. Evolution of neuropeptide Y, peptide YY and pancreatic polypeptide. Regul Pept 1996; 62: 1–11
  • Michel M C, Beck-Sickinger A G, Cox H, Doods H N, Herzog H, Larhammar D, Quirion R, Schwartz T, Westfall T. XVI. International Union of Pharmacology recommendations for the nomenclature of neuropeptide Y, peptide YY, and pancreatic polypeptide receptors. Pharmacol Rev 1998; 50: 143–150
  • Berglund M M, Hipskind P A, Gehlert D R. Recent developments in our understanding of the physiological role of PP-fold peptide receptor subtypes. Exp Biol Med 2003; 228: 217–244
  • Turton M D, O'Shea D, Bloom S R. Neuropeptide Y and Drug Development, L Grundemar, S R Bloom. Academic Press, New York 1997; 15–39
  • Batterham R L, Cowley M A, Small C J, Herzog H, Cohe M A, Dakin C L, Wren A M, Brynes A E, Low M J, Ghatei M A, Cone R D, Bloom S R. Gut hormone PYY3-36 physiologically inhibits food intake. Nature 2002; 418: 650–654
  • Tschop M, Castaneda T R, Joost H G, Thone-Reineke C, Ortmann S, Klaus S, Hagan M M, Chandler P C, Oswald K D, Benoit S C, Seeley R J, Kinzig K P, Moran T H, Beck-Sickinger A G, Koglin N, Rodgers R J, Blundell J E, Ishii Y, Beattie A H, Holch P, Allison D B, Raun K, Madsen K, Wulff B S, Stidsen C E, Birringer M, Kreuzer O J, Schindler M, Arndt K, Rudolf K, Mark M, Deng X Y, Whitcomb D C, Halem H, Taylor J, Dong J, Datta R, Culler M, Craney S, Flora D, Smiley D, Heiman M L. Physiology: Does gut hormone PYY3-36 decrease food intake in rodents?. Nature 2004; 430: 165
  • Blundell T L, Pitts J E, Tickle S P, Wu C W. X-ray analysis (1.4 A resolution) of avian pancreatic polypeptide: Small globular protein hormone. Proc Natl Acad Sci USA 1981; 78: 4175–4179
  • Li X A, Sutcliffe M J, Schwartz T W, Dobson C M. Sequence-specific1H NMR assignments and solution structure of bovine pancreatic polypeptide. Biochemistry 1992; 31: 1245–1253
  • Darbon H, Bernassau J M, Deleuze C, Chenu J, Roussel A, Cambillau C. Solution conformation of human neuropeptide Y by 1H nuclear magnetic resonance and restrained molecular dynamics. Eur J Biochem 1992; 209: 765–771
  • Monks S A, Karagianis G, Howlett G J, Norton R S. Solution structure of human neuropeptide Y. J Biomol NMR 1996; 8: 379–390
  • Bettio A, Gutewort V, Poppl A, Dinger M C, Zschornig O, Klaus A, Toniolo C, Beck-Sickinger A G. Electron paramagnetic resonance backbone dynamics studies on spin-labelled neuropeptide Y analogues. J Pept Sci 2002; 8: 671–682
  • Keire D A, Kobayashi M, Solomon T E, Reeve J R, Jr. Solution structure of monomeric peptide YY supports the functional significance of the PP-fold. Biochemistry 2000; 39: 9935–9942
  • Keire D A, Mannon P, Kobayashi M, Walsh J H, Solomon T E, Reeve J R, Jr. Primary structures of PYY, (Pro34)PYY, and PYY-(3-36) confer different conformations and receptor selectivity. Am J Physiol Gastrointest Liver Physiol 2000; 279: G129–G131
  • Henry G D, Sykes B D. Methods to study membrane protein structure in solution. Methods Enzymol 1994; 239: 515–535
  • Wimley W C, White S H. Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat Struct Biol 1996; 3: 842–848
  • Hessa T, Kim H, Bihlmaier K, Lundin C, Boekel J, Andersson H, Nilsson I, White S H, von Heijne G. Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 2005; 433: 377–381
  • Killian J A, von Heijne G. How proteins adapt to a membrane-water interface. Trends Biochem Sci 2000; 25: 429–434
  • Walker P, Munoz M, Martinez R, Peitsch M C. Acidic residues in extracellular loops of the human Y1 neuropeptide Y receptor are essential for ligand binding. J Biol Chem 1994; 269: 2863–2869
  • Sautel M, Rudolf K, Wittneben H, Herzog H, Martinez R, Munoz M, Eberlein W, Engel W, Walker P, Beck-Sickinger A G, Neuropeptide Y. and the nonpeptide antagonist BIBP 3226 share an overlapping binding site at the human Y1 receptor. Mol Pharmacol 1996; 50: 285–292
  • Beck-Sickinger A G, Wieland H A, Wittneben H, Willim K D, Rudolf K, Jung G. Complete L-alanine scan of neuropeptide Y reveals ligands binding to Y1 and Y2 receptors with distinguished conformations. Eur J Biochem 1994; 225: 947–958
  • Zacharias N, Dougherty D A. Cation-π interactions in ligand recognition and catalysis. Trends Pharmacol Sci 2002; 23: 281–287
  • Beck-Sickinger A G, Jung G. Structure-activity relationships of neuropeptide Y analogues with respect to Y1 and Y2 receptors. Biopolymers 1995; 37: 123–142
  • Mozsolits H, Aguilar M I. Surface plasmon resonance spectroscopy: An emerging tool for the study of peptide-membrane interactions. Biopolymers 2002; 66: 3–18
  • Popot J L, Engelman D M. Helical membrane protein folding, stability, and evolution. Annu Rev Biochem 2000; 69: 881–922
  • Grisshammer R, White J F, Trinh L B, Shiloach J. Large-scale expression and purification of a G-protein-coupled receptor for structure determination—an overview. J Struct Funct Genomics 2005; 6: 159–163
  • Sarramegn V, Muller I, Milon A, Talmont F, Recombinant G. protein-coupled receptors from expression to renaturation: A challenge towards structure. Cell Mol Life Sci 2006; 63: 1149–1164
  • Pervushin K, Riek R, Wider G, Wüthrich K. Attenuated T2 relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 1997; 94: 12366–12371
  • Tjandra N, Bax A. Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 1997; 278: 1111–1114
  • Opella S J, Marassi F M. Structure determination of membrane proteins by NMR spectroscopy. Chem Rev 2004; 104: 3587–3606
  • Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 2000; 1: 31–39

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.