244
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Global Down-Regulation of Gene Expression in the Brain Using RNA Interference, with Emphasis on Monoamine Transporters and GPCRs: Implications for Target Characterization in Psychiatric and Neurological Disorders

, , , , , , , , , & show all
Pages 527-547 | Published online: 10 Oct 2008

REFERENCES

  • Robinson E S, Nutt D J, Jackson H C, Hudson A L. Antisense oligonucleotides in psychopharmacology and behaviour: Promises and pitfalls. J Psychopharmacol 1997; 11: 259–269
  • Tilly G, Chapuis J, Vilette D, Laude H, Vilotte J L. Efficient and specific down-regulation of prion protein expression by RNAi. Biochem Biophys Res Commun 2003; 305: 548–551
  • Xia X G, Zhou H, Zhou S, Yu Y, Wu R, Xu Z. An RNAi strategy for treatment of amyotrophic lateral sclerosis caused by mutant Cu, Zn superoxide dismutase. J Neurochem 2005; 92: 362–367
  • Zhang Y, Zhang Y F, Bryant J, Charles A, Boado R J, Pardridge W M, Intravenous R NA. interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin Cancer Res 2004; 10: 3667–3677
  • Robinson R. RNAi therapeutics: How likely, how soon?. PLoS Biol 2004; 2: e28
  • Stevenson M. Therapeutic potential of RNA interference. N Engl J Med 2004; 351: 1772–1777
  • Scacheri P C, Rozenblatt-Rosen O, Caplen N J, Wolfsberg T G, Umayam L, Lee J C, Hughes C M, Shanmugam K S, Bhattacharjee A, Meyerson M, Collins F S. Short interfering RNAs can induce unexpected and divergent changes in the levels of untargeted proteins in mammalian cells. Proc Natl Acad Sci USA 2004; 101: 1892–1897
  • Bitko V, Barik S. Phenotypic silencing of cytoplasmic genes using sequence-specific double-stranded short interfering RNA and its application in the reverse genetics of wild type negative-strand RNA viruses. BMC Microbiol 2001; 1: 34–44
  • Dillon C P, Sandy P, Nencioni A, Kissler S, Rubinson D A, Van Parijs L. RNAi as an experimental and therapeutic tool to study and regulate physiological and disease processes. Annu Rev Physiol 2005; 67: 147–173
  • Fire A, Xu S, Montgomery M K, Kostas S A, Driver S E, Mello C C. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391: 806–811
  • Davidson T J, Harel S, Arboleda V A, Prunell G F, Shelanski M L, Greene L A, Troy C M. Highly efficient small interfering RNA delivery to primary mammalian neurons induces MicroRNA-like effects before mRNA degradation. Neurosci 2004; 24: 10040–10046
  • Meister G, Tuschl T. Mechanisms of gene silencing by double-stranded RNA. Nature 2004; 431: 343–349
  • Thakker D R, Hoyer D, Cryan J F. Interfering with the brain: use of RNA interference (RNAi) for understanding the pathophysiology of psychiatric and neurological disorders. Pharmacol Ther 2006; 109: 413–438
  • Dorn G, Patel S, Wotherspoon G, Hemmings-Mieszczak M, Barclay J, Natt F J, Martin P, Bevan S, Fox A, Ganju P, Wishart W, Hall J. siRNA relieves chronic neuropathic pain. Nucleic Acids Res 2004; 32: e49
  • Davies W. Knockdown not knockout. Drug Discovery Today 2005; 10: 157–158
  • Thakker D R, Natt F, Hüsken D, Maier R, Müller M, van der Putten H, Hoyer D, Cryan J F. Neurochemical and behavioral consequences of widespread gene knockdown in the adult mouse brain using nonviral RNA interference. Proc Natl Acad Sci USA 2004; 101: 17270–17275
  • Thakker D R, Natt F, van der Putten H, Maier R, Hoyer D, Cryan J F. siRNA-mediated knockdown of the serotonin transporter in the adult mouse brain induces antidepressant-like effects. Mol Psychiatry 2005; 10: 782–789
  • Hüsken D, Asselbergs F, Kinzel B, Natt F, Weiler J, Martin P, Haner R, Hall J. mRNA fusion constructs serve in a general cell-based assay to profile oligonucleotide activity. Nucleic Acids Res 2003; 31: e102
  • Paxinos G, Franklin K BJ. The Mouse Brain in Stereotaxic Coordinates, 2nd ed. Academic Press, London 2001
  • Mombereau C, Kaupmann K, Froestl W, Sansig G, van der Putten H, Cryan J F. Genetic and pharmacological evidence of a role for GABAB receptors in the modulation of anxiety-and antidepressant-like behavior. Neuropsychopharmacology 2004; 29: 1050–1062
  • Cryan J F, Dalvi A, Jin S H, Hirsch B R, Lucki I, Thomas S A. Use of dopamine-β-hydroxylase-deficient mice to determine the role of norepinephrine in the mechanism of action of antidepressant drugs. J Pharmacol Exp Ther 2001; 298: 651–657
  • Cryan J F, Mombereau C. In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. Mol Psychiatry 2004; 9: 326–357
  • Lucki I, Dalvi A, Mayorga A J. Sensitivity to the effects of pharmacologically selective antidepressants in different strains of mice. Psychopharmacology 2001; 155: 315–322
  • Holmes A, Yang R J, Murphy D L, Crawley J N. Evaluation of antidepressant-related behavioral responses in mice lacking the serotonin transporter. Neuropsychopharmacology 2002; 27: 914–923
  • Bischoff S, Barhanin J, Bettler B, Mulle C, Heinemann S. Spatial distribution of kainate receptor subunit mRNA in the mouse basal ganglia and ventral mesencephalon. J Comp Neurol 1997; 379: 541–562
  • Benmansour S, Cecchi M, Morilak D A, Gerhardt G A, Javors M A, Gould G G, Frazer A. Effects of chronic antidepressant treatments on serotonin transporter function, density, and mRNA level. J Neurosci 1999; 19: 10494–10501
  • Hommel J D, Sears R M, Georgescu D, Simmons D L, Di Leone R J. Local gene knockdown in the brain using viral-mediated RNA interference. Nat Med 2003; 9: 1539–1544
  • Van d en, Haute C, Eggermont K, Nuttin B, Debyser Z, Baekelandt V. Lentiviral vector-mediated delivery of short hairpin RNA results in persistent knockdown of gene expression in mouse brain. Hum Gene Ther 2003; 14: 1799–1807
  • Xia H, Mao Q, Eliason S L, Harper S Q, Martins I H, Orr H T, Paulson H L, Yang L, Kotin R M, Davidson B L. RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med 2004; 10: 816–820
  • Xia H, Mao Q, Paulson H L, Davidson B L. siRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol 2002; 20: 1006–1010
  • Chao J, Nestler E J. Molecular neurobiology of drug addiction. Annu Rev Med 2004; 55: 113–132
  • Lewis D A, Lieberman J A. Catching up on schizophrenia: natural history and neurobiology. Neuron 2000; 28: 325–334
  • Millan M J. The neurobiology and control of anxious states. Prog Neurobiol 2003; 70: 83–244
  • Nestler E J, Gould E, Manji H, Buncan M, Duman R S, Greshenfeld H K, Hen R, Koester S, Lederhendler I, Meaney M, Robbins T, Winsky L, Zalcman S. Preclinical models: status of basic research in depression. Biol Psychiatry 2002; 52: 503–528
  • Sisodia S S, George-Hyslop St P H. γ-Secretase, Notch, Aβ and Alzheimer's disease: Where do the presenilins fit in?. Nat Rev Neurosci 2002; 3: 281–290
  • Isacson R, Kull B, Salmi P, Wahlestedt C. Lack of efficacy of ‘naked’ small interfering RNA applied directly to rat brain. Acta Physiol Scand 2003; 179: 173–177
  • Shishkina G T, Kalinina T S, Dygalo N N. Attenuation of α2A-adrenergic receptor expression in neonatal rat brain by RNA interference or antisense oligonucleotide reduced anxiety in adulthood. Neuroscience 2004; 129: 521–528
  • Makimura H, Mizuno T M, Mastaitis J W, Agami R, Mobbs C V. Reducing hypothalamic AGRP by RNA interference increases metabolic rate and decreases body weight without influencing food intake. BMC Neurosci 2002; 3: 18
  • Giros B, Jaber M, Jones S R, Wightman R M, Caron M G. Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 1996; 379: 606–612
  • Thakker D R, Schmutz M, Maier R, Natt R, Hüsken D, van der Putten H, Flor P J, Hoyer D, Cryan J F. siRNA-induced knockdown of the group III metabotropic glutamate receptor mGluR7 in the adult mouse brain induces an anxiolytic-like response. Soc Neuroscience Abstr 2005; 678.10
  • Thakker D R, Hoyer D, Schmutz M, Maier R, Natt F, Hüsken D, Sansig G, van der Putten H, Flor P J, Cryan J F. mGlur7 plays a key role in the modulation of anxiety behavior: Evidence from mGlur7-knockout mice and siRNA-induced knockdown in the adult mouse brain. Neuropharmacology 2005; 49: 275, (Suppl 1)
  • Cryan J F, Mitsukawa K, Thakker D R, Mombereau C, Lötscher E, Uzunov D P, Natt F, Huesken D, Maier R, McAllister K, Hoyer D, van der Putten H, Flor P J. mGluR7: A novel therapeutic target for stress-related disorders. Neuropsychopharmacology 2005; 30: S31, (Suppl)

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.