767
Views
111
CrossRef citations to date
0
Altmetric
Review Article

Receptors for Protons or Lipid Messengers or Both?

, &
Pages 599-610 | Published online: 10 Oct 2008

REFERENCES

  • Mahadevan M S, Baird S, Bailly J E, Shutler G G, Sabourin L A, Tsilfidis C, Neville C E, Narang M, Korneluk R G. Isolation of a novel G protein-coupled receptor (GPR4) localized to chromosome 19q13.3. Genomics 1995; 30: 84–88
  • An S, Tsai C, Goetzl E J. Cloning, sequencing and tissue distribution of two related G protein-coupled receptor candidates expressed prominently in human lung tissue. FEBS Lett 1995; 375: 121–124
  • Xu Y, Casey G. Identification of human OGR1, a novel G protein-coupled receptor that maps to chromosome 14. Genomics 1996; 35: 397–402
  • Choi J W, Lee S Y, Choi Y. Identification of a putative G protein-coupled receptor induced during activation-induced apoptosis of T cells. Cell Immunol 1996; 168: 78–84
  • Weng Z, Fluckiger A C, Nisitani S, Wahl M I, Le L Q, Hunter C A, Fernal A A, Le Beau M M, Witte O N. A DNA damage and stress inducible G protein-coupled receptor blocks cells in G2/M. Proc Natl Acad Sci USA 1998; 95: 12334–12339
  • Xu Y, Zhu K, Hong G, Wu W, Baudhuin L M, Xiao Y, Damron D S. Sphingosylphosphorylcholine is a ligand for ovarian cancer G-protein-coupled receptor 1. Nat Cell Biol 2000; 2: 261–267
  • Nat Cell Biol 2006; 8: 299, Retraction in
  • Zhu K, Baudhuin L M, Hong G, Williams F S, Cristina K L, Kabarowski J H, Witte O N, Xu Y. Sphingosylphosphorylcholine and lysophosphatidylcholine are ligands for the G protein-coupled receptor GPR4. J Biol Chem 2001; 276: 41325–41335
  • J Biol Chem 2005; 280: 43280, Retraction in
  • Kabarowski J H, Zhu K, Le L Q, Witte O N, Xu Y. Lysophosphatidylcholine as a ligand for the immunoregulatory receptor G2A. Science 2001; 293: 702–705
  • Science 2005; 307: 206, Retraction in
  • Im D S, Heise C E, Nguyen T, O'Dowd B F, Lynch K R. Identification of a molecular target of psychosine and its role in globoid cell formation. J Cell Biol 2001; 153: 429–434
  • Hla T, Lee M J, Ancellin N, Paik J H, Kluk M J. Lysophospholipids–receptor revelations. Science 2001; 294: 1875–1878
  • Chun J, Rosen H. Lysophospholipid receptors as potential drug targets in tissue transplantation and autoimmune diseases. Curr Pharm Des 2006; 12: 161–171
  • Ludwig M G, Vanek M, Guerini D, Gasser J A, Jones C E, Junker U, Hofstetter H, Wolf R M, Seuwen K. Proton-sensing G-protein-coupled receptors. Nature 2003; 425: 93–98
  • Wang J Q, Kon J, Mogi C, Tobo M, Damirin A, Sato K, Komachi M, Malchinkhuu E, Murata N, Kimura T, Kuwabara A, Wakamatsu K, Koizumi H, Uede T, Tsujimoto G, Kurose H, Sato T, Harada A, Misawa N, Tomura H, Okajima F. TDAG8 is a proton-sensing and psychosine-sensitive G-protein-coupled receptor. J Biol Chem 2004; 279: 45626–45633
  • Ishii S, Kihara Y, Shimizu T. Identification of T cell death-associated gene 8 (TDAG8) as a novel acid sensing G-protein-coupled receptor. J Biol Chem 2005; 280: 9083–9087
  • Murakami N, Yokomizo T, Okuno T, Shimizu T. G2A is a proton-sensing G-protein-coupled receptor antagonized by lysophosphatidylcholine. J Biol Chem 2004; 279: 42484–42491
  • Radu C G, Nijagal A, McLaughlin J, Wang L, Witte O N. Differential proton sensitivity of related G protein-coupled receptors T cell death-associated gene 8 and G2A expressed in immune cells. Proc Natl Acad Sci USA 2005; 102: 1632–1637
  • Obinata H, Hattori T, Nakane S, Tatei K, Izumi T. Identification of 9-hydroxyoctadecadienoic acid and other oxidized free fatty acids as ligands of the G protein-coupled receptor G2A. J Biol Chem 2005; 280: 40676–40683
  • Mogi C, Tomura H, Tobo M, Wang J Q, Damirin A, Kon J, Komachi M, Hashimoto K, Sato K, Okajima F. Sphingosylphosphorylcholine antagonizes proton-sensing ovarian cancer G-protein-coupled receptor 1 (OGR1)-mediated inositol phosphate production and cAMP accumulation. J Pharmacol Sci 2005; 99: 160–167
  • Tomura H, Mogi C, Sato K, Okajima F. Proton-sensing and lysolipid-sensitive G-protein-coupled receptors: a novel type of multi-functional receptors. Cell Signal 2005; 17: 1466–1476
  • Im D S. Two ligands for a GPCR, proton vs lysolipid. Acta Pharmacol Sin 2005; 26: 1435–1441
  • Meyer z u, Heringdorf D, Himmel H M, Jakobs K H. Sphingosylphosphorylcholine-biological functions and mechanisms of action. Biochim Biophys Acta 2002; 1582: 178–189
  • Alewijnse A E, Michel M C. Sphingosine-1-phosphate and sphingosylphosphorylcholine: Two of a kind?. Br J Pharmacol 2006; 147: 347–348
  • Overton H A, Babbs A J, Doel S M, Fyfe M C, Gardner L S, Griffin G, Jackson H C, Procter M J, Rasamison C M, Tang-Christensen M, Widdowson P S, Williams G M, Reynet C. Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab 2006; 3: 167–175
  • Komarova S V, Pereverzev A, Shum J W, Sims S M, Dixon S J. Convergent signaling by acidosis and receptor activator of NF-κ B ligand (RANKL) on the calcium/calcineurin/NFAT pathway in osteoclasts. Proc Natl Acad Sci USA 2005; 102: 2643–2648
  • Tomura H, Wang J Q, Komachi M, Damirin A, Mogi C, Tobo M, Kon J, Misawa N, Sato K, Okajima F. Prostaglandin I2 production and cAMP accumulation in response to acidic extracellular pH through OGR1 in human aortic smooth muscle cells. J Biol Chem 2005; 280: 34458–34464
  • Arnett T. Regulation of bone cell function by acid-base balance. Proc Nutr Soc 2003; 62: 511–520
  • Frick K K, Bushinsky D A. Metabolic acidosis stimulates RANKL RNA expression in bone through a cyclo-oxygenase-dependent mechanism. J Bone Miner Res 2003; 18: 1317–1325
  • Brandao-Burch A, Utting J C, Orriss I R, Arnett T R. Acidosis inhibits bone formation by osteoblasts in vitro by preventing mineralization. Calcif Tissue Int 2005; 77: 167–174
  • Aalkjaer C, Peng H L. pH and smooth muscle. Acta Physiol Scand 1997; 161: 557–66
  • Wray S, Smith R D. Mechanisms of action of pH-induced effects on vascular smooth muscle. Mol Cell Biochem 2004; 263: 163–72
  • Lum H, Qiao J, Walter R J, Huang F, Subbaiah P V, Kim K S, Holian O. Inflammatory stress increases receptor for lysophosphatidylcholine in human microvascular endothelial cells. Am J Physiol Heart Circ Physiol 2003; 285: H1786–H1789
  • Kim K S, Ren J, Jiang Y, Ebrahem Q, Tipps R, Cristina K, Xiao Y J, Qiao J, Taylor K L, Lum H, Anand-Apte B, Xu Y. GPR4 plays a critical role in endothelial cell function and mediates the effects of sphingosylphosphorylcholine. FASEB J 2005; 19: 819–821
  • Radu C G, Cheng D, Nijagal A, Riedinger M, McLaughlin J, Yang L V, Johnson J, Witte O N. Normal immune development and glucocorticoid-induced thymocyte apoptosis in mice deficient for the T-cell death-associated gene 8 receptor. Mol Cell Biol 2006; 26: 668–677
  • Nattie E, Li A. Central chemoreception 2005: A brief review. Auton Neurosci 2006; 126: 332–338
  • Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M. A proton-gated cation channel involved in acid-sensing. Nature 1997; 386: 173–177

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.