107
Views
19
CrossRef citations to date
0
Altmetric
Research Article

Heptahelical Terpsichory. Who Calls the Tune?

&
Pages 39-58 | Published online: 10 Oct 2008

REFERENCES

  • Lander E S, Linton L M, Birren B, Nusbaum C, Zody M C, Baldwin J, Devon K, Dewar K, Doyle M, Fitz Hugh W, et al. Initial sequencing and analysis of the human genome. Nature 2001; 409: 860–921
  • Venter J C, Adams M D, Myers E W, Li P W, Mural R J, Sutton G G, Smith H O, Yandell M, Evans C A, Holt R A, et al. The sequence of the human genome. Science 2001; 291: 1304–1351
  • Flower D R. Modeling G-protein-coupled receptors for drug design. Biochim Biophys Acta 1999; 1422: 207–234
  • Gesty-Palmer D, Luttrell L M. G-protein-coupled receptors. Encyclopedia of Endocrinology and Endocrine Diseases, Vol. 2, L Martini. Academic Press, San Diego 2004; 336–348
  • Luttrell L M. Transmembrane signaling by G protein-coupled receptors. Meth Mol Biol 2006; 332: 3–49
  • Freedman N J, Lefkowitz R J. Desensitization of G protein-coupled receptors. Recent Prog Horm Res 1996; 51: 319–351
  • Ferguson S S. Evolving concepts in G protein-coupled receptor endocytosis: The role in receptor desensitization and signaling. Pharm Rev 2001; 53: 1–24
  • Berman D M, Gilman A G. (1998). Mammalian RGS proteins: Barbarians at the gate. J Biol Chem 1998; 273: 1269–1272
  • Maudsley S, Martin B, Luttrell L M. Perspectives in Pharmacology: The origins of diversity and specificity in G protein-coupled receptor signaling. J Pharm Exp Ther 2005; 314: 485–494
  • Devi L. Heterodimerization of G-protein-coupled receptors: Pharmacology, signaling and trafficking. Trends Pharmacol Sci 2001; 22: 532–537
  • Milligan G. Oligomerisation of G-protein-coupled receptors. J Cell Sci 2001; 114: 1265–1271
  • Angers S, Salahpour A, Bouvier M. Dimerization: An emerging concept for G protein-coupled receptor ontogeny and function. Ann Rev Pharmacol Toxicol 2002; 42: 409–435
  • Foord S M, Marshall F H. RAMPs: accessory proteins for seven transmembrane domain receptors. Trends Pharmacol Sci 1999; 20: 184–187
  • Sexton P M, Albiston A, Morfis M, Tilakaratne N. Receptor activity modifying proteins. Cell Signal 2001; 13: 73–83
  • Hall R A, Lefkowitz R J. Regulation of G protein-coupled receptor signaling by scaffold proteins. Circ Res 2002; 91: 672–680
  • Brady A E, Limbird L E. G protein-coupled receptor interacting proteins: Emerging roles in localization and signal transduction. Cell Signal 2002; 14: 297–309
  • El Far O, Betz H. G-protein-coupled receptors for neurotransmitter amino acids: C-terminal tails, crowded signalosomes. Biochem J 2002; 365: 329–336
  • Bockaert J, Marin P, Dumuis A, Fagni L. The ‘magic tail’ of G protein-coupled receptors: An anchorage for functional protein networks. FEBS Lett 2003; 546: 65–72
  • Luttrell L M. Regulators of GPCR activity: The Arrestins. Contemporary Clinical Neuroscience: The G Protein-Coupled Receptors Handbook, L Devi. Humana Press, Totowa, NJ 2005; 159–198
  • Shinohara T, Dietzschold B, Craft C M, Wistow G, Early J J, Donoso L A, Horwitz J, Tao R. Primary and secondary structure of bovine retinal S antigen (48-kDa protein). Proc Natl Acad Sci U SA 1987; 84: 6975–6979
  • Yamaki K, Takahashi Y, Sakuragi S, Matsubara K. Molecular cloning of the S-antigen cDNA from bovine retina. Biochem Biophys Res Commun 1987; 142: 904–910
  • Murakami A, Yajima T, Sakuma H, McClaren M J, Inana G. X-arrestin: A new retinal arrestin mapping to the X chromosome. FEBS Lett 1993; 334: 203–209
  • Craft C M, Whitmore D H, Weichmann A F. Cone arrestin identified by targeting expression of a functional family. J Biol Chem 1994; 269: 4613–4619
  • Lohse M J, Benovic J L, Codina J, Caron M G, Lefkowitz R J. Beta-arrestin: A protein that regulates beta-adrenergic receptor function. Science 1990; 248: 1547–1550
  • Attramandal H, Arriza J L, Aoki C, Dawson T M, Codina J, Kwatra M M, Snyder S H, Caron M G, Lefkowitz R J. Beta-arrestin 2, a novel member of the arrestin/b-eta-arrestin gene family. J Biol Chem 1992; 267: 17882–17890
  • Lefkowitz R J. G-protein-coupled receptor kinases. Cell 1993a; 74: 409–412
  • Zhang J, Ferguson S S, Barak L S, Menard L, Caron M G. Dynamin and beta-arrestin reveal distinct mechanisms for G protein-coupled receptor internalization. J Biol Chem 1996; 271: 18302–18305
  • Krupnick J G, Goodman O B, Jr, Keen J H, Benovic J L. Arrestin/clathrin interaction. Localization of the clathrin binding domain of nonvisual arrestins to the carboxy terminus. J Biol Chem 1997; 272: 15011–15016
  • Laporte S A, Oakley R H, Zhang J, Holt J A, Ferguson S S, Caron M G, Barak L S. The beta2 adrenergic receptor/betaarrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proc Natl Acad Sci U SA 1999; 96: 3712–3717
  • Oakley R H, Laporte S A, Holt J A, Barak L S, Caron M G. Association of beta-arrestin with G protein-coupled receptors during clathrin-mediated endocytosis dictates the profile of receptor resensitization. J Biol Chem 1999; 274: 32248–32257
  • Gurevich V V, Pals-Rylaarsdam R, Benovic J L, Hosey M M, Onorato J J. Agonist-receptor-arrestin, an alternative ternary complex with high agonist affinity. J Biol Chem 1997; 272: 28849–28852
  • Miller W E, Lefkowitz R J. Expanding roles for beta-arrestins as scaffolds and adapters in GPCR signaling and trafficking. Curr Opin Cell Biol 2001a; 13: 139–145
  • Perry S J, Lefkowitz R J. Arresting developments in heptahelical receptor signaling and regulation. Trends Cell Biol 2002a; 12: 130–138
  • Luttrell L M, Lefkowitz R J. The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci 2002; 115: 455–465
  • Shenoy S K, Lefkowitz R J. Multifaceted roles of beta-arrestins in the regulation of seven-membrane-spanning receptor trafficking and signalling. Biochem J 2003; 375: 503–515
  • Shenoy S K, Lefkowitz R J. Seven-transmembrane receptor signaling through beta-arrestin. Sci STKE 2005a, (308), cm10
  • Luttrell L M, Ferguson S SG, Daaka Y, Miller W E, Maudsley S, Della Rocca G J, Lin F-T, Kawakatsu H, Owada K, Luttrell D K, Caron M G, Lefkowitz R J. β -Arrestin-dependent formation of β 2 adrenergic receptor/Src protein kinase complexes. Science 1999; 283: 655–661
  • DeFea K A, Vaughn Z D, O'Bryan E M, Nishijima D, Dery O, Bunnett N W. The proliferative and antiapoptotic effects of substance P are facilitated by formation of a β -arrestin-dependent scaffolding complex. Proc Natl Acad Sci U SA 2000a; 97: 11086–11091
  • Barlic J, Andrews J D, Kelvin A A, Bosinger S E, DeVries M E, Xu L, Dobransky T, Feldman R D, Ferguson S SG, Kelvin D J. Regulation of tyrosine kinase activation and granule release through β -arrestin by CXCRI. Nature Immunol 2000; 1: 227–233
  • Imamura T, Huang J, Dalle S, Ugi S, Usui I, Luttrell L M, Miller W E, Lefkowitz R J, Olefsky J M. Beta-Arrestin-mediated recruitment of the Src family kinase Yes mediates endothelin-1-stimulated glucose transport. J Biol Chem 2001; 276: 43663–43667
  • Ghalayini A J, Desai N, Smith K R, Holbrook R M, Elliott M H, Kawakatsu H. Light-dependent association of Src with photoreceptor rod outer segment membrane proteins in vivo. J Biol Chem 2002; 277: 1469–1476
  • Ahn S, Maudsley S, Luttrell L M, Lefkowitz R J, Daaka Y. Src-mediated tyrosine phosphorylation of dynamin is required for beta2-adrenergic receptor internalization and mitogen-activated protein kinase signaling. J Biol Chem 1999; 274: 1185–1188
  • Miller W E, Maudsley S, Ahn S, Kahn K D, Luttrell L M, Lefkowitz R J. β -Arrestin1 interacts with the catalytic domain of the tyrosine kinase c-SRC. J Biol Chem 2000; 275: 11312–11319
  • Penela P, Elorza A, Sarnage S, Mayor F, Jr. Beta-arrestin and c-Src-dependent degradation of G-protein-coupled receptor kinase 2. EMBO J 2001; 20: 5129–5138
  • Ahn S, Kim J, Lucaveche C L, Reedy M C, Luttrell L M, Lefkowitz R J, Daaka Y. Src-dependent tyrosine phosphorylation regulates dynamin self-assembly and ligand-induced endocytosis of the epidermal growth factor receptor. J Biol Chem 2002; 277: 26642–26651
  • McDonald P H, Chow C-W, Miller W E, LaPorte S A, Field M E, Lin F-T, Davis R J, Lefkowitz R J. β -Arrestin 2: A receptor-regulated MAPK scaffold for the activation of JNK3. Science 2000; 290: 1574–1577
  • DeFea K A, Zalevsky J, Thoma M S, Dery O, Mullins R D, Bunnett N W. Beta-Arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. J Cell Biol 2000b; 148: 1267–1281
  • Luttrell L M, Roudabush F L, Choy E W, Miller W E, Field M E, Pierce K L, Lefkowitz R J. Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds. Proc Natl Acad Sci U SA 2001; 98: 2449–2454
  • Azzi M, Charest P G, Angers S, Rousseau G, Kohout T, Bouvier M, Pineyro G. Beta-arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors. Proc Natl Acad Sci U SA 2003; 100: 11406–11411
  • Gesty-Palmer D, El-Shewy H, Kohout T A, Luttrell L M. beta-Arrestin 2 expression determines the transcriptional response to lysophosphatidic acid stimulation in murine embryo fibroblasts. J Biol Chem 2005; 280: 32157–32167
  • Gesty-Palmer D, Chen M, Oakley R, Reiter E, Ahn S, Nelson C D, Spurney R F, Luttrell L M, Lefkowitz R J. Distinct conformations of the parathyroid hormone receptor mediate G protein and beta-arrestin dependent activation of ERK1/2. J Biol Chem 2006; 281: 10856–10864
  • Witherow D S, Garrison T R, Miller W E, Lefkowitz R J. beta-Arrestin inhibits NF-kappaB activity by means of its interaction with the NF-kappaB inhibitor IkappaBalpha. Proc Natl Acad Sci U SA 2004; 101: 8603–8607
  • Fan H, Luttrell L M, Tempel G E, Senn J J, Halushka P V, Cook J A. β -Arrestins 1 and 2 differentially regulate LPS-induced signaling and pro-inflammatory gene expression. Mol Immunol 2007; 44: 3092–3099
  • Shenoy S K, McDonald P H, Kohout T A, Lefkowitz R J. Regulation of receptor fate by ubiquitination of activated beta2-adrenergic receptor and beta-arrestin. Science 2001; 294: 1307–1313
  • Perry S J, Baillie G S, Kohout T A, McPhee I, Magiera M M, Ang K L, Miller W E, McLean A J, Conti M, Houslay M D, Lefkowitz R J. Targeting of cyclic AMP degradation to beta 2-adrenergic receptors by beta-arrestins. Science 2002b; 298: 834–836
  • Nelson C D, Perry S J, Regier D S, Prescott S M, Topham M K, Lefkowitz R J. Targeting of diacylglycerol degradation to M1 muscarinic receptors by beta-arrestins. Science 2007; 315: 663–666
  • Bhattacharya M, Anborgh P H, Babwah A V, Dale L B, Dobransky T, Benovic J L, Feldman R D, Verdi J M, Rylett R J, Ferguson S S. Beta-arrestins regulate a Ral-GDS Ral effector pathway that mediates cytoskeletal reorganization. Nat Cell Biol 2002; 4: 547–555
  • Goel R, Baldassare J J. beta-Arrestin 1 couples thrombin to the rapid activation of the Akt pathway. Ann N Y Acad Sci 2002; 973: 138–141
  • Beaulieu J M, Sotnikova T D, Marion S, Lefkowitz R J, Gainetdinov R R, Caron M G. An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 2005; 122: 261–273
  • Ahn S, Shenoy S K, Wei H, Lefkowitz R J. Differential kinetic and spatial patterns of beta-arrestin and G protein-mediated ERK activation by the angiotensin II receptor. J Biol Chem 2004; 279: 35518–35525
  • Shenoy S K, Drake M T, Nelson C D, Houtz D A, Xiao K, Madabushi S, Reiter E, Premont R T, Lichtarge O, Lefkowitz R J. Beta-arrestin-dependent, G protein-independent ERK1/2 activation by the beta2 adrenergic receptor. J Biol Chem 2006; 281: 1261–1273
  • Oakley R H, Laporte S A, Holt J A, Caron M G, Barak L S. Differential affinities of visual arrestin, beta-arrestin1, and beta-arrestin2 for G protein-coupled receptors delineate two major classes of receptors. J Biol Chem 2000; 275: 17201–17210
  • Shenoy S K, Lefkowitz R J. Receptor-specific ubiquitination of beta-arrestin directs assembly and targeting of seven-transmembrane receptor signalosomes. J Biol Chem 2005b; 280: 15315–15324
  • Shenoy S K, Barak L S, Xiao K, Ahn S, Berthouze M, Shukla A K, Luttrell L M, Lefkowitz R J. Ubiquitination of beta-arrestin links seven-transmembrane receptor endocytosis and ERK activation. J Biol Chem 2007; 282: 29549–29562
  • Wei H, Ahn S, Shenoy S K, Karnik S, Hunyady L, Luttrell L M, Lefkowitz R J. Independent G protein and beta-Arrestin2 mediated activation of ERK by angiotensin. Proc Natl Acad Sci U SA 2003; 100: 10782–10787
  • Jafri F, El-Shewy H M, Luttrell D K, Luttrell L M. Expression of a chimeric neurokinin NK-1 receptor-beta-arrestin 1 fusion protein produces constitutive ERK1/2 activation in HEK-293 cells: Probing the composition and function of the G protein-coupled receptor ‘signalsome’. J Biol Chem 2006; 281: 19346–19357
  • Terrillon S, Bouvier M. Receptor activity-independent recruitment of betaarrestin2 reveals specific signalling modes. EMBO J 2004; 23: 3950–3961
  • Karlin A. On the application of “a plausible model” of allosteric proteins to the receptor for acetylcholine. J Theor Biol 1967; 16: 306–320
  • Thron C D. On the analysis of pharmacological experiments in terms of an allosteric receptor model. Mol Pharmacol 1973; 9: 1–9
  • DeLean A, Stadel J M, Lefkowitz R J. A ternary complex model explains the agonist specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor. J Biol Chem 1980; 255: 7108–711
  • Samama P, Cotecchia S, Costa T, Lefkowitz R J. A mutation-induced activated state of the b2-adrenergic receptor. Extending the ternary complex model. J Biol Chem 1993; 268: 4625–4636
  • Lefkowitz R J, Cotecchia S, Samama P, Costa T. Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins. Trends Pharmacol Sci 1993b; 14: 303–307
  • Meller E, Puza T, Diamond J, Lieu H D, Bohmaker K. Comparative effects of receptor inactivation, 17 β -estradiol and pertussis toxin on dopaminergic inhibition of prolactin secretion in vitro. J Pharmacol Exp Ther 1992; 263: 462–469
  • Spengler D, Waeber C, Pantaloni C, Holsboer F, Bockaert J, Seeburg P H, Journot L. Differential signal transduction by five splice variants of the PACAP receptor. Nature 1993; 365: 170–175
  • Berg K A, Maayani S, Goldfarb J, Scaramellini C, Leff P, Clarke W P. Effector pathway-dependent relative efficacy at serotonin type 2A and 2C receptors: evidence for agonist-directed trafficking of receptor stimulus. Mol Pharmacol 1998; 54: 94–104
  • Bonhaus D W, Chang L K, Kwan J, Martin G R. Dual activation and inhibition of adenylyl cyclase by cannabinoid receptor agonists: Evidence for agonist-specific trafficking of intracellular responses. J Pharmacol Exp Ther 1998; 287: 884–888
  • Sagan S, Karoyan P, Chassaing G, Lavielle S. Further delineation of the two binding sites (R*(n)) associated with tachykinin neurokinin-1 receptors using [3-Prolinomethionine(11)]SP analogues. J Biol Chem 1999; 274: 23770–23776
  • Perez D M, Hwa J, Gaivin R, Mathur M, Brown F, Graham R M. Constitutive activation of a single effector pathway: Evidence for multiple activation states of a G protein-coupled receptor. Mol Pharmacol 1996; 49: 112–122
  • Krumins A M, Barber R. The stability of the agonist β 2-adrenergic receptor-Gs complex: evidence for agonist-specific states. Mol Pharmacol 1997; 52: 144–154
  • Scaramellini C, Leff P. A three-state receptor model: predictions of multiple agonist pharmacology for the same receptor type. Ann N Y Acad Sci 1998; 861: 97–103
  • Seifert R, Gether U, Wenzel-Seifert K, Kobilka B K. Effects of guanine, inosine, and xanthine nucleotides on β (2)-adrenergic receptor/G(s) interactions: Evidence for multiple receptor conformations. Mol Pharmacol 1999a; 56: 348–358
  • Seifert R, Wenzel-Seifert K, Kobilka B K. GPCR-Gα fusion proteins: molecular analysis of receptor-G-protein coupling. Trends Pharmacol Sci 1999b; 20: 383–389
  • Barroso S, Richard F, Nicolas-Etheve D, Kitabgi P, Labbe-Jullie C. Constitutive activation of the neurotensin receptor 1 by mutation of Phe(358) in Helix seven. Br J Pharmacol 2002; 135: 997–1002
  • Leff P, Scaramellini C, Law C, McKechnie K. A three-state receptor model of agonist action. Trends Pharmacol Sci 1997; 18: 355–362
  • Christopoulos A, Kenakin T. G protein-coupled receptor allosterism and complexing. Pharmacol Rev 2002; 54: 323–374
  • Kenakin T. Drug efficacy at G protein-coupled receptors. Annu Rev Pharmacol Toxicol 2002; 42: 349–379
  • Gether U, Lin S, Kobilka B K. Fluorescent labeling of purified β 2 adrenergic receptor. Evidence for ligand-specific conformational changes. J Biol Chem 1995; 270: 28268–28275
  • Ghanouni P, Gryczynski Z, Steenhuis J J, Lee T W, Farrens D L, Lakowicz J R, Kobilka B K. Functionally different agonists induce distinct conformations in the G protein coupling domain of the β 2 adrenergic receptor. J Biol Chem 2001; 276: 24433–24436
  • Holloway A C, Qian H, Pipolo L, Ziogas J, Miura S, Karnik S, Southwell B R, Lew M J, Thomas W G. Side-chain substitutions within angiotensin II reveal different requirements for signaling, internalization and phosphorylation of type 1A angiotensin receptors. Mol Pharmacol 2002; 61: 768–777
  • Gardella T J, Luck M D, Jensen G S, Schipani E, Potts J T, Jr, Juppner H. Inverse agonism of amino-terminally truncated parathyroid hormone (PTH) and PTH-related peptide (PTHrP) analogs revealed with constitutively active mutant PTH/PTHrP receptor. Endocrinology 1996; 137: 3936–3941
  • Sneddon W B, Magyar C E, Willick G E, Syme C A, Galbiati F, Bisello A, Friedman P A. Ligand-selective dissociation of activation and internalization of the parathyroid hormone (PTH) receptor: Conditional efficacy of PTH peptide fragments. Endocrinology 2004; 145: 2815–2823
  • Bisello A, Chorev M, Rosenblatt M, Monticelli L, Mierke D F, Ferrari S L. Selective ligand-induced stabilization of active and desensitized parathyroid hormone type 1 receptor conformations. J Biol Chem 2002; 277: 38524–38530
  • Wisler J W, DeWire S M, Whalen E J, Violin J D, Drake M T, Ahn S, Shenoy S K, Lefkowitz R J. A unique mechanism of beta-blocker action: Carvedilol stimulates beta-arrestin signaling. Proc Natl Acad Sci U SA 2007; 104: 16657–16662
  • Downes G B, Gautam N, The G. protein subunit gene families. Genomics 1999; 62: 544–552
  • Ren X R, Reiter E, Ahn S, Kim J, Chen W, Lefkowitz R J. Different G protein-coupled receptor kinases govern G protein and beta-arrestin-mediated signaling of V2 vasopressin receptor. Proc Natl Acad Sci U SA 2005; 102: 1448–1453
  • Miller W E, McDonald P H, Cai S F, Field M F, Davis R J, Lefkowitz R J. Identification of a motif in the carboxy terminus of β –arrestin2 responsible for activation of JNK3. J Biol Chem 2001b; 276: 27770–27777
  • Fong A M, Premont R T, Richardson R M, Yu Y R, Lefkowitz R J, Patel D D. Defective lymphocyte chemotaxis in beta-arrestin2- and GRK6-deficient mice. Proc Natl Acad Sci U SA 2002; 99: 7478–7483
  • Ge L, Ly Y, Hollenberg M, DeFea K. A beta-arrestin-dependent scaffold is associated with prolonged MAPK activation in pseudopodia during protease-activated receptor-2-induced chemotaxis. J Biol Chem 2003; 278: 34418–34426
  • Zoudilova M, Kumar P, Ge L, Wang P, Bokoch G M, DeFea K A. Beta-arrestin-dependent regulation of the cofilin pathway downstream of protease-activated receptor-2. J Biol Chem 2007; 282: 20634–20646
  • Rajagopal K, Whalen E J, Violin J D, Stiber J A, Rosenberg P B, Premont R T, Coffman T M, Rockman H A, Lefkowitz R J. Beta-arrestin2-mediated inotropic effects of the angiotensin II type 1A receptor in isolated cardiac myocytes. Proc Natl Acad Sci U SA 2006; 103: 16284–16289
  • Tohgo A, Pierce K L, Choy E W, Lefkowitz R J, Luttrell L M. Beta-Arrestin scaffolding of the ERK cascade enhances cytosolic ERK activity but inhibits ERK-mediated transcription following angiotensin AT1a receptor stimulation. J Biol Chem 2002; 277: 9429–9436
  • Brunet A, Roux D, Lenormand P, Dowd S, Keyse S, Pouyssegur J. Nuclear translocation of p42/p44 mitogen-activated protein kinase is required for growth factor-induced gene expression and cell cycle entry. EMBO J 1999; 18: 664–674
  • Kang J, Shi Y, Xiang B, Qu B, Su W, Zhu M, Zhang M, Bao G, Wang F, Zhang X, Yang R, Fan F, Chen X, Pei G, Ma L. A nuclear function of beta-arrestin1 in GPCR signaling: regulation of histone acetylation and gene transcription. Cell 2005; 123: 833–847
  • Ma L, Pei G. Beta-arrestin signaling and regulation of transcription. J Cell Sci 2007; 120: 213–218
  • Scott M G, Le Rouzic E, Perianin A, Pierotti V, Enslen H, Benichou S, Marullo S, Benmerah A. Differential nucleocytoplasmic shuttling of beta-arrestins. Characterization of a leucine-rich nuclear export signal in beta-arrestin2. J Biol Chem 2002; 277: 37693–37701
  • Wang P, Wu Y, Ge X, Ma L, Pei G. Subcellular localization of beta-arrestins is determined by their intact N domain and the nuclear export signal at the C terminus. J Biol Chem 2003; 278: 11648–11653
  • Conner D A, Mathier M A, Mortensen R M, Christe M, Vatner S F, Seidman C E, Seidman J G. Beta-Arrestin1 knockout mice appear normal but demonstrate altered cardiac responses to beta-adrenergic stimulation. Circ Res 1997; 81: 1021–1026
  • Bohn L M, Lefkowitz R J, Gainetdinov R R, Peppel K, Caron M G, Lin F-T. Enhanced morphine analgesia in mice lacking beta-arrestin 2. Science 1999; 286: 2495–2498
  • Bouxsein M L, Pierroz D D, Glatt V, Goddard D S, Cavat F, Rizzoli R, Ferrari S L. Beta-arrestin 2 regulates the differential response of cortical and trabecular bone to intermittent PTH in female mice. J Bone Miner Res 2005; 20: 635–643
  • Noma T, Lemaire A, Naga Prasad S V, Barki-Harrington L, Tilley D G, Chen J, Le Corvoisier P, Violin J D, Wei H, Lefkowitz R J, Rockman H A. Beta-arrestin-mediated beta1-adrenergic receptor transactivation of the EGFR confers cardioprotection. J Clin Invest 2007; 117: 2445–2458
  • Zhai P, Yamamoto M, Galeotti J, Liu J, Masurekar M, Thaisz J, Irie K, Holle E, Yu X, Kupershmidt S, Roden D M, Wagner T, Yatani A, Vatner D E, Vatner S F, Sadoshima J. Cardiac-specific overexpression of AT1 receptor mutant lacking G alpha q/G alpha i coupling causes hypertrophy and bradycardia in transgenic mice. J Clin Invest 2005; 115: 3045–3056
  • Violin J D, Lefkowitz R J. Beta-arrestin-biased ligands at seven-transmembrane receptors. Trends Pharmacol Sci 2007; 28: 416–422

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.