459
Views
30
CrossRef citations to date
0
Altmetric
Research Article

GPCR-Kir Channel Signaling Complexes: Defining Rules of Engagement

Pages 83-91 | Published online: 10 Oct 2008

REFERENCES

  • Zhang Y, Devries M E, Skolnick J. Structure modeling of all identified G protein-coupled receptors in the human genome. PLoS Comput Biol 2006; 2: e13
  • Venter J C, Adams M D, Myers E W, Li P W, Mural R J, Sutton G G, Smith H O, Yandell M, Evans C A, Holt R A, Gocayne J D, Amanatides P, Ballew R M, Huson D H, Wortman J R, Zhang Q, Kodira C D, Zheng X H, Chen L, Skupski M, Subramanian G, Thomas P D, Zhang J, Gabor Miklos G L, Nelson C, Broder S, Clark A G, Nadeau J, McKusick V A, Zinder N, Levine A J, Roberts R J, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Di Francesco V, Dunn P, Eilbeck K, Evangelista C, Gabrielian A E, Gan W, Ge W, Gong F, Gu Z, Guan P, Heiman T J, Higgins M E, Ji R R, Ke Z, Ketchum K A, Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov G V, Milshina N, Moore H M, Naik A K, Narayan V A, Neelam B, Nusskern D, Rusch D B, Salzberg S, Shao W, Shue B, Sun J, Wang Z, Wang A, Wang X, Wang J, Wei M, Wides R, Xiao C, Yan C, et al. The sequence of the human genome. Science 2001; 291: 1304–1351
  • Willumsen N J, Bech M, Olesen S P, Jensen B S, Korsgaard M P, Christophersen P. High throughput electrophysiology: new perspectives for ion channel drug discovery. Receptors Channels 2003; 9: 3–12
  • Rebois R V, Hebert T E. Protein complexes involved in heptahelical receptor-mediated signal transduction. Receptors Channels 2006; 9: 169–194
  • Bray D. Signalling complexes: Biophysical constraints on intracellular communication. Annu Rev Biophys Biomol Struct 1998; 27: 59–75
  • Gales C, Rebois R V, Hogue M, Trieu P, Breit A, Hebert T E, Bouvier M. Real-time monitoring of receptor and G-protein interactions in living cells. Nat Methods 2005; 2: 177–184
  • Pfleger K D, Eidne K A. Monitoring the formation of dynamic G-protein-coupled receptor-protein complexes in living cells. Biochem J 2005; 385: 625–637
  • Lohse M J, Hoffmann C, Nikolaev V O, Vilardaga J P, Bunemann M. Kinetic analysis of G protein-coupled receptor signalling using fluorescence resonance energy transfer in living cells. Adv Protein Chem 2007; 74: 167–188
  • Huang C L, Slesinger P A, Casey P J, Jan Y N, Jan L Y. Evidence that direct binding of G beta gamma to the GIRK1 G protein-gated inwardly rectifying K+ channel is important for channel activation. Neuron 1995; 15: 1133–1143
  • Doupnik C A, Dessauer C W, Slepak V Z, Gilman A G, Davidson N, Lester H A. Time resolved kinetics of direct G beta 1 gamma 2 interactions with the carboxyl terminus of Kir3.4 inward rectifier K+ channel subunits. Neuropharmacology 1996; 35: 923–931
  • Huang C L, Jan Y N, Jan L Y. Binding of the G protein betagamma subunit to multiple regions of G protein-gated inward-rectifying K+ channels. FEBS Lett 1997; 405: 291–298
  • He C, Yan X, Zhang H, Mirshahi T, Jin T, Huang A, Logothetis D E. Identification of critical residues controlling G protein-gated inwardly rectifying K(+) channel activity through interactions with the beta gamma subunits of G proteins. J Biol Chem 2002; 277: 6088–6096
  • Peleg S, Varon D, Ivanina T, Dessauer C W, Dascal N. G(alpha)(i) controls the gating of the G protein-activated K(+) channel, GIRK. Neuron 2002; 33: 87–99
  • Ivanina T, Rishal I, Varon D, Mullner C, Frohnwieser-Steinecke B, Schreibmayer W, Dessauer C W, Dascal N. Mapping the Gbetagamma-binding sites in GIRK1 and GIRK2 subunits of the G protein-activated K+ channel. J Biol Chem 2003; 278: 29174–29183
  • Ivanina T, Varon D, Peleg S, Rishal I, Porozov Y, Dessauer C W, Keren-Raifman T, Dascal N. Galphai1 and Galphai3 differentially interact with, and regulate, the G protein-activated K+ channel. J Biol Chem 2004; 279: 17260–17268
  • Clancy S M, Fowler C E, Finley M, Suen K F, Arrabit C, Berton F, Kosaza T, Casey P J, Slesinger P A. Pertussis-toxin-sensitive Galpha subunits selectively bind to C-terminal domain of neuronal GIRK channels: Evidence for a heterotrimeric G-protein-channel complex. Mol Cell Neurosci 2005; 28: 375–389
  • Kawano T, Zhao P, Floreani C V, Nakajima Y, Kozasa T, Nakajima S. Interaction of Galphaq and Kir3, G protein-coupled inwardly rectifying potassium channels. Mol Pharmacol 2007; 71: 1179–1184
  • Nikolov E N, Ivanova-Nikolova T T. Coordination of membrane excitability through a GIRK1 signalling complex in the atria. J Biol Chem 2004; 279: 23630–23636
  • Oldham W M, Hamm H E. Structural basis of function in heterotrimeric G proteins. Q Rev Biophys 2006; 39: 117–166
  • Johnston C A, Siderovski D P. Receptor-mediated activation of heterotrimeric G-proteins: current structural insights. Mol Pharmacol 2007; 72: 219–230
  • Lavine N, Ethier N, Oak J N, Pei L, Liu F, Trieu P, Rebois R V, Bouvier M, Hebert T E, Van Tol H H. G protein-coupled receptors form stable complexes with inwardly rectifying potassium channels and adenylyl cyclase. J Biol Chem 2002; 277: 46010–46019
  • Benians A, Leaney J L, Milligan G, Tinker A. The dynamics of formation and action of the ternary complex revealed in living cells using a G-protein-gated K+ channel as a biosensor. J Biol Chem 2003; 278: 10851–10858
  • David M, Richer M, Mamarbachi A M, Villeneuve L R, Dupre D J, Hebert T E. Interactions between GABA-B1 receptors and Kir 3 inwardly rectifying potassium channels. Cell Signal 2006; 18: 2172–2181
  • Jaen C, Doupnik C A. RGS3 and RGS4 differentially associate with G protein-coupled receptor-Kir3 channel signalling complexes revealing two modes of RGS modulation. Precoupling and collision coupling. J Biol Chem 2006; 281: 34549–34560
  • Rebois R V, Robitaille M, Gales C, Dupre D J, Baragli A, Trieu P, Ethier N, Bouvier M, Hebert T E. Heterotrimeric G proteins form stable complexes with adenylyl cyclase and Kir3.1 channels in living cells. J Cell Sci 2006; 119: 2807–2818
  • Fowler C E, Aryal P, Suen K F, Slesinger P A. Evidence for association of GABA(B) receptors with Kir3 channels and regulators of G protein signalling (RGS4) proteins. J Physiol 2007; 580: 51–65
  • Bernstein L S, Ramineni S, Hague C, Cladman W, Chidiac P, Levey A I, Hepler J R. RGS2 binds directly and selectively to the M1 muscarinic acetylcholine receptor third intracellular loop to modulate Gq/11alpha signalling. J Biol Chem 2004; 279: 21248–21256
  • Hague C, Bernstein L S, Ramineni S, Chen Z, Minneman K P, Hepler J R. Selective inhibition of alpha1A-adrenergic receptor signalling by RGS2 association with the receptor third intracellular loop. J Biol Chem 2005; 280: 27289–27295
  • Wang X, Zeng W, Soyombo A A, Tang W, Ross E M, Barnes A P, Milgram S L, Penninger J M, Allen P B, Greengard P, Muallem S. Spinophilin regulates Ca2+ signalling by binding the N-terminal domain of RGS2 and the third intracellular loop of G-protein-coupled receptors. Nat Cell Biol 2005; 7: 405–411
  • Abramow-Newerly M, Roy A A, Nunn C, Chidiac P. RGS proteins have a signalling complex: Interactions between RGS proteins and GPCRs, effectors, and auxiliary proteins. Cell Signal 2006; 18: 579–591
  • Georgoussi Z, Leontiadis L, Mazarakou G, Merkouris M, Hyde K, Hamm H. Selective interactions between G protein subunits and RGS4 with the C-terminal domains of the mu- and delta-opioid receptors regulate opioid receptor signalling. Cell Signal 2006; 18: 771–782
  • Doupnik C A, Davidson N, Lester H A, Kofuji P. RGS proteins reconstitute the rapid gating kinetics of gbetagamma-activated inwardly rectifying K+ channels. Proc Natl Acad Sci U S A 1997; 94: 10461–10466
  • Saitoh O, Kubo Y, Miyatani Y, Asano T, Nakata H. RGS8 accelerates G-protein-mediated modulation of K+ currents. Nature 1997; 390: 525–529
  • Zhang Q, Pacheco M A, Doupnik C A. Gating properties of GIRK channels activated by Galpha(o)- and Galpha(i)-coupled muscarinic m2 receptors in Xenopus oocytes: The role of receptor precoupling in RGS modulation. J Physiol 2002; 545: 355–373
  • Kobrinsky E, Mirshahi T, Zhang H, Jin T, Logothetis D E. Receptor-mediated hydrolysis of plasma membrane messenger PIP2 leads to K+–current desensitization. Nat Cell Biol 2000; 2: 507–514
  • Cohen N A, Brenman J E, Snyder S H, Bredt D S. Binding of the inward rectifier K+ channel Kir2.3 to PSD-95 is regulated by protein kinase a phosphorylation. Neuron 1997; 17: 759–767
  • Nehring R B, Wischmeyer E, Döring F, Veh R W, Sheng M, Karschin A. Neuronal inwardly rectifying K(+) channels differentially couple to PDZ proteins of the PSD-95/SAP90 family. J Neurosci 2000; 20: 156–162
  • Leonoudakis D, Mailliard W, Wingerd K, Clegg D, Vandenberg C. Inward rectifier potassium channel Kir2.2 is associated with synapse-associated protein SAP97. J Cell Sci 2001; 114: 987–998
  • Leonoudakis D, Conti L R, Radeke C M, McGuire L M, Vandenberg C A. A multiprotein trafficking complex composed of SAP97, CASK, Veli, and Mint1 is associated with inward rectifier Kir2 potassium channels. J Biol Chem 2004a; 279: 19051–19063
  • Leonoudakis D, Conti L R, Anderson S, Radeke C M, McGuire L M, Adams M E, Froehner S C, Yates J R, 3rd, Vandenberg C A. Protein trafficking and anchoring complexes revealed by proteomic analysis of inward rectifier potassium channel (Kir2.x)-associated proteins. J Biol Chem 2004b; 279: 22331–22346
  • Horio Y, Hibino H, Inanobe A, Yamada M, Ishii M, Tada Y, Satoh E, Hata Y, Takai Y, Kurachi Y. Clustering and enhanced activity of an inwardly rectifying potassium channel, Kir4.1, by an anchoring protein, PSD-95/SAP90. J Biol Chem 1997; 272: 12885–12888
  • Connors N C, Adams M E, Froehner S C, Kofuji P. The potassium channel Kir4.1 associates with the dystrophin-glycoprotein complex via alpha-syntrophin in glia. J Biol Chem 2004; 279: 28387–28392
  • Connors N C, Kofuji P. Potassium channel Kir4.1 macromolecular complex in retinal glial cells. Glia 2006; 53: 124–131
  • Huang C, Sindic A, Hill C E, Hujer K M, Chan K W, Sassen M, Wu Z, Kurachi Y, Nielsen S, Romero M F, Miller R T. Interaction of the Ca2+-sensing receptor with the inwardly rectifying potassium channels Kir4.1 and Kir4.2 results in inhibition of channel function. Am J Physiol Renal Physiol 2007; 292: F1073–1081
  • Tilakaratne N, Sexton P M. G-Protein-coupled receptor-protein interactions: basis for new concepts on receptor structure and function. Clin Exp Pharmacol Physiol 2005; 32: 979–987
  • Doronin S V, Potapova I A, Lu Z, Cohen I S. Angiotensin receptor type 1 forms a complex with the transient outward potassium channel Kv4.3 and regulates its gating properties and intracellular localization. J Biol Chem 2004; 279: 48231–48237
  • Bunemann M, Pott L. Down-regulation of A1 adenosine receptors coupled to muscarinic K+ current in cultured guinea-pig atrial myocytes. J Physiol 1995; 482: 81–92, (Pt 1)
  • Sodickson D L, Bean B P. Neurotransmitter activation of inwardly rectifying potassium current in dissociated hippocampal CA3 neurons: interactions among multiple receptors. J Neurosci 1998; 18: 8153–8162
  • Bosche L I, Wellner-Kienitz M C, Bender K, Pott L. G protein-independent inhibition of GIRK current by adenosine in rat atrial myocytes overexpressing A1 receptors after adenovirus-mediated gene transfer. J Physiol 2003; 550: 707–717
  • Lober R M, Pereira M A, Lambert N A. Rapid activation of inwardly rectifying potassium channels by immobile G-protein-coupled receptors. J Neurosci 2006; 26: 12602–12608

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.