86
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Functional Assays as Prismatic Views of Drug Activity: Relevance to New Drug Discovery

Pages 109-125 | Published online: 10 Oct 2008

REFERENCES

  • De Lean A, Stadel J M, Lefkowitz R J. A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled β -adrenergic receptor. J Biol Chem 1980; 255: 7108–7117
  • Samama P, Cotecchia S, Costa T, Lefkowitz R J. A mutation-induced activated state of the β2-adrenergic receptor: Extending the ternary complex model. J Biol Chem 1993; 268: 4625–4636
  • Weiss J M, Morgan P H, Lutz M W, Kenakin T P. The cubic ternary complex receptor-occupancy model. I. Model description. J Theor Biol 1996; 178: 151–167
  • Weiss J M, Morgan P H, Lutz M W, Kenakin T P. The cubic ternary complex receptor-occupancy model. II. Understanding apparent affinity J Theor Biol 1996; 178: 169–182
  • Weiss J M, Morgan P H, Lutz M W, Kenakin T P. The cubic ternary complex receptor-occupancy model. III. Resurrecting efficacy. J Theor Biol 1996; 181: 381–397
  • Fraunfelder H, Parak F, Young R D. Conformational substrates in proteins. Annu Rev Biophys Biophys Chem 1988; 17: 451–479
  • Fraunfelder H, Sligar S G, Wolynes P G. The energy landscapes and motions of proteins. Science 1991; 254: 1598–1603
  • Onaran H O, Costa T. Agonist efficacy and allosteric models of receptor action. Ann N Y Acad Sci 1997; 812: 98–115
  • Onaran H O, Scheer A, Cotecchia S, Costa T. A look at receptor efficacy. From the signaling network of the cell to the intramolecular motion of the receptor. The Pharmacology of Functional, Biochemical, and Recombinant Systems Handbook of Experimental Pharmacology, Vol. 148, T P Kenakin, J A Angus. Springer, HeidelbergGermany 2000; 217–280
  • Burgen A SV. Conformational changes and drug action. Fed Proc 1966; 40: 2723–2728
  • Kenakin T P. Efficacy at G protein coupled receptors. Annu Rev Pharmacol Toxicol 2002; 42: 349–379
  • Kenakin T P. Efficacy at G protein coupled receptors. Nat Rev (Drug Discovery) 2002; 1: 103–109
  • Rees S, Morrow D, Kenakin T. GPCR drug discovery through the exploitation of allosteric drug binding sites. Recept Chann 2002; 8: 261–268
  • Black J W, Leff P. Operational models of pharmacological agonist. Proc R Soc Lond [Biol], 1983; 220: 141–162
  • Kenakin T. P. Predicting therapeutic value in the lead optimization phase of drug discovery. Nat Rev Drug Discovery 2003; 2: 429–437
  • Azzi M, Charest P G, Angers S, Rousseau G, Kohout T, Bouvier M. β -arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G-protein-coupled receptors. Proc Natl Acad Sci U SA 2003; 100: 11406–11411
  • Baker J G, Hall I P, Hill S J. Agonist and inverse agonist actions of β -blockers at the human β 2-adrenoceptor provide evidence for agonist-directed signaling. Mol Pharmacol 2003; 64: 1357–1369
  • Galandrin S, Bouvier M. Distinct signaling profiles of β1 and β2 adrenergic receptor ligands toward adenylyl cyclase and mitogen-activated protein kinase reveals the pluridimensionality of efficacy. Mol Pharmacol 2006; 70: 1575–1584
  • Copeland R A, Pompliano D L, Meek T D. Drug-target residence time and its implications for lead optimization. Nat Rev Drug Discovery 2006; 5: 730–739
  • Costa T, Herz A. Antagonists with negative intrinsic activity at β -opioid receptors coupled to GTP-binding proteins. Proc Natl Acad Sci U SA 1989; 86: 7321–7325
  • Gether U, Lin S, Kobilka B K. Fluorescent labeling of purified β2-adrenergic receptor. J Biol Chem 1995; 270: 28268–28275
  • Kenakin T P. Ligand-selective receptor conformations revisited: The promise and the problem. Trends Pharmacol. Sci. 2003; 24: 346–354
  • Kenakin T P. Collateral efficacy in drug discovery: Taking advantage of the good (allosteric) nature of 7TM receptors. Trends Pharmacol Sci 2007; 28: 407–415
  • Urban J D, Clarke W P, Zastrow M, Nichols D E, Kobilka B, Weinstein H, et al. Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther 2007; 320: 1–13
  • Limbird L. The receptor concept: A continuing evolution. Mol Interv 2004; 4: 326–336
  • Horne W C, Shyu J-F, Chakraborty M, Baron R. Signal transduction by calcitonin: Multiple ligands, receptors, and signaling pathways. Trends Endocrinol Metab 1994; 5: 395–401
  • Watson C, Chen G, Irving P E, Way J, Chen W-J, Kenakin T P. The use of stimulus-biased assay systems to detect agonist-specific receptor active states: Implications for the trafficking of receptor stimulus by agonists. Mol. Pharmacol. 2000; 58: 1230–1238
  • Kenakin T P. New concepts in drug discovery: Collateral efficacy and permissive antagonism. Nat Rev Drug Discovery 2005; 4: 919–927
  • Kenakin T P. Efficacy at G protein coupled receptors. Annu Rev Pharmacol Toxicol 2002; 42: 349–379
  • Gesty-Palmer D, Chen M, Reiter E, Ahn S, Nelson C D, Wang S, et al. Distinct β -arrestin- and G protein-dependent pathways for parathyroid hormone receptor-stimulated ERK1/2 activation. J Biol Chem 2006; 281: 10856–10864
  • Maillet E L, Pellegrini N, Valant C, Bucher B, Hibert M B, Bourguignon J-J, Glazi J-L. A novel, conformation-specific allosteric inhibitor of the tachykinin NK2 receptor (NK2R) with functionally selective properties. FASEB J 2007; 21: 2124–2134
  • Sachpatzidis A, Benton B K, Manfredi J P, Wang H, Hamilton A, Dohlman H G, Loliset E. Identification of allosteric peptide agonists. J Biol Chem 2003; 278: 896–907
  • Mathiesen J M, Ulven T, Martini L, Gerlach L O, Heinemann A, Kosteniset E. Identification of indole derivatives exclusively interfering with a G protein-independent signaling pathway of the prostaglandin D2 receptor CRTH2. Mol Pharmacol 2005; 68: 393–402
  • Doranz B J, Lu Z H, Rucker J, Zhang T Y, Sharron M, Cen Y H, Wang Z H, Guo H H, Du J G, Accavitti M A, Doms R W, Peiper S C. Two distinct CCR5 domains can mediate coreceptor usage by human immunodeficiency virus type 1. J Virol 1997; 71: 6305–6314
  • Rucker J, Edinger A L, Sharron M, Samson M, Lee B, Berson J F, Yi Y, Margulies B, Collman R G, Doranz B J, Parmentier M, Doms R W. Utilization of chemokine receptors, orphan receptors, and herpesvirus-encoded receptors by diverse human and simian immunodeficiency viruses. J Virol 1997; 71: 8999–9007
  • Picard L, Simmons G, Power C A, Meyer A, Weiss R A, Clapham P R. Multiple extracellular domains of CCR-5 contribute to human immunodeficiency virus type 1 entry and fusion. J Virol 1997; 71: 5003–5011
  • Doms R W, Peiper S C. Unwelcomed guests with master keys: How H IVuses chemokine receptors for cellular entry. Virology 1997; 235: 179–190
  • Lee B, Sharron M, Blanpain C, Doranz B J, Vakili J, Setoh P, Berg E, Liu G, Guy H R, Durell S R, Parmentier M, Chang C N, Price K, Tsang M, Doms R W. Epitope mapping of CCR5 reveals multiple conformational states and distinct but overlapping structures involved in chemokine and coreceptor function. J Biol Chem 1999; 274: 9617–9626
  • Atchison R E, Gosling J, Monteclaro F S, Franci C, Digilio L, Charo I F, Goldsmith M A. Multiple extracellular elements of CCR5 and HIV-1 entry: Dissociation from response to chemokines. Science 1996; 274: 1924–1926
  • Smyth R J, Yi Y, Singh A, Collman R G. Determinants of entry cofactor utilization and Tropism in a dualtropic human immunodeficiency virus type 1 primary isolate. J Virol 1998; 72: 4478–4484
  • Bieniasz P D, Fridell R A, Aramori I, Ferguson S SG, Caron M G, Cullen B R. HIV-1-induced cell fusion is mediated by multiple regions within both the viral envelope and the CCR-5 co-receptor. EMBO J 1997; 16: 2599–2609
  • Kwong P D, Wyatt R, Robinson J, Sweet R W, Sodroski J, Hendrickson W A. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 1998; 393: 648–659
  • Kazmierski W, Peckham J P, Duan M, Kenakin T P, Jenkinson S, Gudmundsson K S, Piscitelli S C, Feldman P L. Recent progress in discovery of new CCR5 and CXCR4 chemokine receptor antagonists as inhibitors of HIV-1 entry. Part 2. Curr Med Chem Anti-Infective Agents 2005; 4: 2456–2472
  • Kazmierski W M, Kenakin T P, Gudmundsson K S. Peptide, peptidomimetic and small-molecule drug discovery targeting HIV-1 host-cell attachment and entry through gp120, gp41, CCR5 and CXCR4. Chem Biol Drug Dis 2006; 67: 13–26
  • Domingo E, Menendez-Arias L, Quinones-Mateu M E, Holguin A, Gutierrez Rivas M, Martinez M A, Quer J, Novella I S, Holland J J. Viral quasispecies and the problem of vaccine-escape and drug resistant mutants. Prog Drug Res 1997; 48: 99–128
  • Harrigan P R, Bloor S, Larder B A. Relative replicative fitness of zidoviudine-resistant human immunodeficiency virus type 1 isolates in vitro. J Virol 1998; 72: 3773–3778
  • Schols D, Este J A, Cabrera C, De Clercq E. T-cell-line-tropic human immunodeficiency virus type 1 that is made resistant to stromal cell-derived factor 1-α contains mutations in the envelope gp120 but does not show a switch in coreceptor use. J. Virol. 1998; 72: 4032–4037
  • Mosier M E, MoGastón D E, Picchio R, Gulizia R J, Sabbe R, Poignard P, Picard L, Offord R E, Thompson D A, Wilken J. Highly potent RANTES analogues either prevent CCR5-using human immunodeficiency virus type1 infection in vivo or rapidly select for CXCR4-using variants. J Virol 1999; 73: 3544–3550
  • Trkola A, Kuhmann S E, Strizki J M, Maxwell E, Ketas T, Morgan T, Pugach P, Xu S, Wojcik L, Tagat J, Palani A, Shapiro S, Clader J W, McCombie S, Reyes G R, Baroudy B M, Moore J P. HIV-1 escape from a small molecule, CCR5-specific entry inhibitor does not involve CXCR4 use. Proc Natl Acad Sci U SA 2002; 99: 395–400
  • Kenakin T P, Jenkinson S, Watson C. Determining the potency and molecular mechanism of action of insurmountable antagonists. J Pharmacol Exp Ther 2006; 319: 710–723
  • Jakubic J, Bacakova L, Lisa V, El-Fakahany E E, Tucek S. Positive cooperativity of acetylcholine and other agonists with allosteric ligands on muscarinic acetylcholine receptors. Mol Pharmacol 1997; 52: 172–179
  • Xiang J, George S L, Wünschmann S, Chang Q, Klinzman D, Stapleton J T. Inhibition of HIV-1 replication by GB virus C infection through increases in RANTES, MlP-lα, MIP-1β, and SDF-1. Lancet 2004; 363: 2040–2046
  • Garzino-Demo A, Moss R B, Margolick J B, Cleghorn F, Sill A, Blattner W A, Cocchi F, Carlo D J, DeVico A L, Gallo R C. Spontaneous and antigen-induced production of HIV-inhibitory β -chemokines are associated with AIDS-free status. Proc Natl Acad Sci U SA 1999; 96: 11986–11991
  • Heredia A, Davis C, Amoroso A, Dominique J K, Le N, Klingebiel E, Reardon E, Zella D, Redfield R R. Induction of G1 cycle arrest in T lymphocytes results in increased extracellular levels of β -chemokines: A strategy to inhibit R5 HIV-1. Proc Natl. Acad. Sci U SA 2003; 100: 4179–4184
  • Ullum H, Cozzi Lepri A C, Victor J, Aladdin H, Phillips A N, Gerstoft J, Skinho P-J, Pedersen B K. Production of β -chemokines in human immunodeficiency virus (HIV) infection: Evidence that high levels of macrophage inflammatory protein-1β are associated with a decreased risk of HIV disease progression. J Infect Dis 1998; 177: 331–337
  • Lori F, Jessen H, Foli A, Lisziewicz J, Matteo P S. Long-term suppression of HIV-1 by hydroxyurea and didanosine. JAMA 1997; 277: 1437–1438
  • Rogez C, Martin M, Dereuddre-Bosquet N, Martal J, Dormont D, Clayette P. Anti-human immunodeficiency virus activity of tau interferon in human macrophages: Involvement of cellular factors and β -chemokines. J Virol 2003; 77: 12914–12920
  • Gonzalez E, Kulkarni H, Bolivar H, Mangano A, Sanchez R, Catano G, Nibbs R J, Freedman B I, Quinones M P, Bamshad M J, Murthy K K, Rovin B H, Bradley W, Clark R A, Anderson S A, O'Connell R J, Agan B K, Ahuja S S, Bologna R, Sen L, Dolan M J, Ahuja S K. The influence of CCL3L1 gene-containing segmental duplications on HIV-1/AIDS susceptibility. Science 2005; 310: 1434–1440
  • Choi W-T, Kaul M, Kumar S, Wang J, Krishna Kumar I M, Dong C-Z, An J, Lipton S A, Huang Z. Neuronal apoptotic signaling pathways probed and intervened by synthetically and modularly modified (SMM) chemokines. J Biol Chem 2007; 282: 7154–7163
  • Kaul M, Lipton S A. Chemokines and activated macrophages in HIV gp120-induced neuronal apoptosis. Proc Natl Acad Sci U SA 1999; 96: 8212–8216
  • Tyner J W, Uchida O, Kajiwara N, Kim E Y, Patel A C, O'Sullivan M P, Walter M J, Schwendener R A, Cook D N, Danoff T M, Holtzman M J. CCL5-CCR5 interaction provides antiapoptotic signals for macrophage survival during viral infection. Nature Med 2005; 11: 1180–1187
  • Vhlahakis S R, Villasis-Keever A, Gomez T, Vanegas M, Vhlahakis N, Paya C V. G protein-coupled chemokine receptors induce both survival and apoptotic singaling pathways. J Immunol 2002; 169: 5546–5554

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.