344
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Nicotine Facilitation of Conditioned Place Preference to Food Reward in Humans

&

References

  • Acquas, E. L. I. O., Carboni, E., Leone, P., & Di Chiara, G. (1989). SCH 23390 blocks drug-conditioned place-preference and place-aversion: Anhedonia (lack of reward) or apathy (lack of motivation) after dopamine-receptor blockade? Psychopharmacology, 99(2), 151–155. https://doi.org/10.1007/BF00442800
  • Ahsan, H. M., de la Pena, J. B. I., Botanas, C. J., Kim, H. J., Yu, G. Y., & Cheong, J. H. (2014). Conditioned place preference and self-administration induced by nicotine in adolescent and adult rats. Biomolecules & Therapeutics, 22(5), 460–466. https://doi.org/10.4062/biomolther.2014.056
  • Allen, R. M., Everett, C. V., Nelson, A. M., Gulley, J. M., & Zahniser, N. R. (2007). Low and high locomotor responsiveness to cocaine predicts intravenous cocaine conditioned place preference in male Sprague–Dawley rats. Pharmacology Biochemistry and Behavior, 86(1), 37–44. https://doi.org/10.1016/j.pbb.2006.12.005
  • Astur, R. S., Carew, A. W., & Deaton, B. E. (2014). Conditioned place preferences in humans using virtual reality. Behavioural Brain Research, 267, 173–177. https://doi.org/10.1016/j.bbr.2014.03.018
  • Attwood, A. S., Penton-Voak, I. S., & Munafò, M. R. (2009). Effects of acute nicotine administration on ratings of attractiveness of facial cues. Nicotine & Tobacco Research: Official Journal of the Society for Research on Nicotine and Tobacco, 11(1), 44–48. https://doi.org/10.1093/ntr/ntn006
  • Bardo, M. T., & Bevins, R. A. (2000). Conditioned place preference: what does it add to our preclinical understanding of drug reward?. Psychopharmacology, 153(1), 31–43. https://doi.org/10.1007/s002130000569
  • Bechtholt, A. J., & Mark, G. P. (2002). Enhancement of cocaine-seeking behavior by repeated nicotine exposure in rats. Psychopharmacology, 162(2), 178–185. https://doi.org/10.1007/s00213-002-1079-1
  • Buffalari, D. M., Marfo, N. Y., Smith, T. T., Levin, M. E., Weaver, M. T., Thiels, E., Sved, A. F., & Donny, E. C. (2014). Nicotine enhances the expression of a sucrose or cocaine conditioned place preference in adult male rats. Pharmacology, Biochemistry, and Behavior, 124, 320–325. https://doi.org/10.1016/j.pbb.2014.06.013
  • Buffalari, D. M., Mollica, J. K., Smith, T. T., Schassburger, R. L., Rinaman, L., Thiels, E., Donny, E. C., & Sved, A. F. (2016). Nicotine enhances Footshock- and Lithium Chloride-Conditioned place avoidance in male rats. Nicotine & Tobacco Research: Official Journal of the Society for Research on Nicotine and Tobacco, 18(9), 1920–1923. https://doi.org/10.1093/ntr/ntw098
  • Caggiula, A. R., Donny, E. C., Chaudhri, N., Perkins, K. A., Evans-Martin, F. F., & Sved, A. F. (2002). Importance of nonpharmacological factors in nicotine self-administration. Physiology & Behavior, 77(4–5), 683–687. https://doi.org/10.1016/S0031-9384(02)00918-6
  • Calcagnetti, D. J., & Schechter, M. D. (1994). Nicotine place preference using the biased method of conditioning. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 18(5), 925–933.
  • Carver, C. S., & White, T. L. (1994). Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: The BIS/BAS scales. Journal of Personality and Social Psychology, 67(2), 319–333. https://doi.org/10.1037/0022-3514.67.2.319
  • Chaudhri, N., Caggiula, A. R., Donny, E. C., Palmatier, M. I., Liu, X., & Sved, A. F. (2006). Complex interactions between nicotine and nonpharmacological stimuli reveal multiple roles for nicotine in reinforcement. Psychopharmacology, 184(3–4), 353–366. https://doi.org/10.1007/s00213-005-0178-1
  • Clark, A., Lindgren, S., Brooks, S. P., Watson, W. P., & Little, H. J. (2001). Chronic infusion of nicotine can increase operant self-administration of alcohol. Neuropharmacology, 41(1), 108–117. https://doi.org/10.1016/S0028-3908(01)00037-5
  • Dawkins, L., Powell, J. H., West, R., Powell, J., & Pickering, A. (2006). A double-blind placebo controlled experimental study of nicotine: I-effects on incentive motivation. Psychopharmacology, 189(3), 355–367. https://doi.org/10.1007/s00213-006-0588-8
  • de la Peña, J. B., Ahsan, H. M., Botanas, C. J., Sohn, A., Yu, G. Y., & Cheong, J. H. (2014). Adolescent nicotine or cigarette smoke exposure changes subsequent response to nicotine conditioned place preference and self-administration. Behavioural Brain Research, 272, 156–164. https://doi.org/10.1016/j.bbr.2014.06.044
  • Donny, E. C., Chaudhri, N., Caggiula, A. R., Evans-Martin, F. F., Booth, S., Gharib, M. A., Clements, L. A., & Sved, A. F. (2003). Operant responding for a visual reinforcer in rats is enhanced by noncontingent nicotine: Implications for nicotine self-administration and reinforcement. Psychopharmacology, 169(1), 68–76. https://doi.org/10.1007/s00213-003-1473-3
  • Erb, S. M., & Parker, L. A. (1994). Individual differences in novelty-induced activity do not predict strength of amphetamine-induced place conditioning. Pharmacology Biochemistry and Behavior, 48(3), 581–586. https://doi.org/10.1016/0091-3057(94)90317-4
  • Fagerstrom, -Oiov., & Schneider, N. G. (1989). Measuring nicotine dependence: A review of the Fagerstrom Tolerance Questionnaire. Journal of Behavioral Medicine, 12(2), 159–182. https://doi.org/10.1007/BF00846549
  • Forget, B., Barthélémy, S., Saurini, F., Hamon, M., & Thiébot, M.-H. (2006). Differential involvement of the endocannabinoid system in short- and long-term expression of incentive learning supported by nicotine in rats. Psychopharmacology, 189(1), 59–69. https://doi.org/10.1007/s00213-006-0525-x
  • Forget, B., Hamon, M., & Thiébot, M.-H. (2005). Cannabinoid CB1 receptors are involved in motivational effects of nicotine in rats. Psychopharmacology, 181(4), 722–734. https://doi.org/10.1007/s00213-005-0015-6
  • Gellner, C. A., Belluzzi, J. D., & Leslie, F. M. (2016). Self-administration of nicotine and cigarette smoke extract in adolescent and adult rats. Neuropharmacology, 109, 247–253. https://doi.org/10.1016/j.neuropharm.2016.06.026
  • Gong, W. (1996). Locomotor response to novelty does not predict cocaine place preference conditioning in rats. Pharmacology Biochemistry and Behavior, 53(1), 191–196. https://doi.org/10.1016/0091-3057(95)00174-3
  • Grieder, T. E., Sellings, L. H., Vargas-Perez, H., Ting-A-Kee, R., Siu, E. C., Tyndale, R. F., & Van Der Kooy, D. (2010). Dopaminergic Signaling Mediates the Motivational Response Underlying the Opponent Process to Chronic but Not Acute Nicotine. Neuropsychopharmacology, 35(4), 943–954. https://doi.org/10.1038/npp.2009.198
  • Horan, B., Gardner, E. L., Dewey, S. L., Brodie, J. D., & Ashby, C. R. (2001). The selective σ1 receptor agonist, 1-(3,4-dimethoxyphenethyl)-4-(phenylpropyl)piperazine (SA4503), blocks the acquisition of the conditioned place preference response to (−)-nicotine in rats. European Journal of Pharmacology, 426(1-2), R1–R2. https://doi.org/10.1016/S0014-2999(01)01229-8
  • Horan, B., Smith, M., Gardner, E. L., Lepore, M., & Ashby, C. R. (1997). (?)-nicotine produces conditioned place preference in Lewis, but not Fischer 344 rats. Synapse, 26(1), 93–94. https://doi.org/10.1002/(SICI)1098-2396(199705)26:1<93::AID-SYN10>3.0.CO;2-W
  • Houtsmuller, E. J., Henningfield, J. E., & Stitzer, M. L. (2003). Subjective effects of the nicotine lozenge: Assessment of abuse liability. Psychopharmacology, 167(1), 20–27. https://doi.org/10.1007/s00213-002-1361-2
  • Jensen, K. P., DeVito, E. E., Valentine, G., Gueorguieva, R., & Sofuoglu, M. (2016). Intravenous nicotine self-administration in smokers: Dose-Response Function and Sex Differences. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 41(8), 2034–2040. https://doi.org/10.1038/npp.2015.373
  • Koob, G. F., & Le Moal, M. (2006). Animal models of drug addiction. In G. F. Koob & M. Le Moal (Eds.), Neurobiology of addiction (pp. 23–67). Academic Press.
  • Le Foll, B., & Goldberg, S. R. (2005). Nicotine induces conditioned place preferences over a large range of doses in rats. Psychopharmacology, 178(4), 481–492. https://doi.org/10.1007/s00213-004-2021-5
  • Levine, A., Huang, Y., Drisaldi, B., Griffin, E. A., Pollak, D. D., Xu, S., Yin, D., Schaffran, C., Kandel, D. B., & Kandel, E. R. (2011). Molecular mechanism for a gateway drug: Epigenetic changes initiated by nicotine prime gene expression by cocaine. Science Translational Medicine, 3(107), 107ra109–107ra109. https://doi.org/10.1126/scitranslmed.3003062
  • McEwen, A., West, R., & Gaiger, M. (2008). Nicotine absorption from seven current nicotine replacement products and a new wide-bore nicotine delivery device. Journal of Smoking Cessation, 3(2), 117–123. https://doi.org/10.1375/jsc.3.2.117
  • McQuown, S. C., Belluzzi, J. D., & Leslie, F. M. (2007). Low dose nicotine treatment during early adolescence increases subsequent cocaine reward. Neurotoxicology and Teratology, 29(1), 66–73. https://doi.org/10.1016/j.ntt.2006.10.012
  • Mello, N. K., Peltier, M. R., & Duncanson, H. (2013). Nicotine levels after IV nicotine and cigarette smoking in men. Experimental and Clinical Psychopharmacology, 21(3), 188–195. https://doi.org/10.1037/a0031799
  • Olausson, P., Jentsch, J. D., & Taylor, J. R. (2003). Repeated nicotine exposure enhances reward-related learning in the rat. Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology, 28(7), 1264–1271. https://doi.org/10.1038/sj.npp.1300173
  • Olausson, P., Jentsch, J. D., & Taylor, J. R. (2004a). Nicotine enhances responding with conditioned reinforcement. Psychopharmacology, 171(2), 173–178. https://doi.org/10.1007/s00213-003-1575-y
  • Olausson, P., Jentsch, J. D., & Taylor, J. R. (2004b). Repeated nicotine exposure enhances responding with conditioned reinforcement. Psychopharmacology, 173(1–2), 98–104. https://doi.org/10.1007/s00213-003-1702-9
  • Orsini, C., Buchini, F., Piazza, P. V., Puglisi-Allegra, S., & Cabib, S. (2004). Susceptibility to amphetamine-induced place preference is predicted by locomotor response to novelty and amphetamine in the mouse. Psychopharmacology, 172(3), 264–270. https://doi.org/10.1007/s00213-003-1647-z
  • Palmatier, M. I., Evans-Martin, F. F., Hoffman, A., Caggiula, A. R., Chaudhri, N., Donny, E. C., Liu, X., Booth, S., Gharib, M., Craven, L., & Sved, A. F. (2006). Dissociating the primary reinforcing and reinforcement-enhancing effects of nicotine using a rat self-administration paradigm with concurrently available drug and environmental reinforcers. Psychopharmacology, 184(3–4), 391–400. https://doi.org/10.1007/s00213-005-0183-4
  • Palmisano, A. N., Hudd, E. C., McQuade, C. M., de Wit, H., & Astur, R. S. (2018). The effects of nicotine on conditioning, extinction, and reinstatement in humans. Addictive Behaviors, 77, 51–58. https://doi.org/10.1016/j.addbeh.2017.09.008
  • Pelloux, Y., Costentin, J., & Duterte-Boucher, D. (2009). Anxiety increases the place conditioning induced by cocaine in rats. Behavioural Brain Research, 197(2), 311–316. https://doi.org/10.1016/j.bbr.2008.08.029
  • Pepper, J. K., & Brewer, N. T. (2014). Electronic nicotine delivery system (electronic cigarette) awareness, use, reactions and beliefs: A systematic review. Tobacco Control, 23(5), 375–384. https://doi.org/10.1136/tobaccocontrol-2013-051122
  • Perkins, K. A., Gerlach, D., Broge, M., Grobe, J. E., Sanders, M., Fonte, C., Vender, J., Cherry, C., & Wilson, A. (2001). Dissociation of nicotine tolerance from tobacco dependence in humans. The Journal of Pharmacology and Experimental Therapeutics, 296(3), 849–856.
  • Perkins, K. A., Grottenthaler, A., & Wilson, A. S. (2009). Lack of reinforcement enhancing effects of nicotine in non-dependent smokers. Psychopharmacology, 205(4), 635–645. https://doi.org/10.1007/s00213-009-1574-8
  • Perkins, K. A., Karelitz, J. L., & Jao, N. C. (2013). Optimal carbon monoxide criteria to confirm 24-hr smoking abstinence. Nicotine & Tobacco Research: Official Journal of the Society for Research on Nicotine and Tobacco, 15(5), 978–982. https://doi.org/10.1093/ntr/nts205
  • Perkins, K. A., & Karelitz, J. L. (2013). Reinforcement enhancing effects of nicotine via smoking. Psychopharmacology, 228(3), 479–486. https://doi.org/10.1007/s00213-013-3054-4
  • Perkins, K. A., & Karelitz, J. L. (2014). Sensory reinforcement-enhancing effects of nicotine via smoking. Experimental and Clinical Psychopharmacology, 22(6), 511–516. https://doi.org/10.1037/a0037823
  • Perkins, K. A., Karelitz, J. L., & Michael, V. C. (2015). Reinforcement enhancing effects of acute nicotine via electronic cigarettes. Drug and Alcohol Dependence, 153, 104–108. https://doi.org/10.1016/j.drugalcdep.2015.05.041
  • Perkins, K. A., Karelitz, J. L., & Boldry, M. C. (2017). Nicotine acutely enhances reinforcement from non-drug rewards in humans. Frontiers in Psychiatry, 8, 65. https://doi.org/10.3389/fpsyt.2017.00065
  • Piazza, P. V., Deroche-Gamonent, V., Rouge-Pont, F., & Le Moal, M. (2000). Vertical Shifts in Self-Administration Dose–Response Functions Predict a Drug-Vulnerable Phenotype Predisposed to Addiction. The Journal of Neuroscience, 20(11), 4226–4232. https://doi.org/10.1523/JNEUROSCI.20-11-04226.2000
  • Popke, E. J., Mayorga, A. J., Fogle, C. M., & Paule, M. G. (2000). Effects of acute nicotine on several operant behaviors in rats. Pharmacology Biochemistry and Behavior, 65(2), 247–254. https://doi.org/10.1016/S0091-3057(99)00205-1
  • Shiffman, S., Fant, R. V., Buchhalter, A. R., Gitchell, J. G., & Henningfield, J. E. (2005). Nicotine delivery systems. Expert Opin Drug Deliv, 2(3), 563–577. https://doi.org/10.1517/17425247.2.3.563
  • Shiffman, S. (2005). Nicotine lozenge efficacy in light smokers. Drug and Alcohol Dependence, 77(3), 311–314. https://doi.org/10.1016/j.drugalcdep.2004.08.026
  • Shimosato, K., & Watanabe, S. (2003). Concurrent evaluation of locomotor response to novelty and propensity toward cocaine conditioned place preference in mice. Journal of Neuroscience Methods, 128(1-2), 103–110. https://doi.org/10.1016/S0165-0270(03)00153-5
  • Söderpalm, B., Ericson, M., Olausson, P., Blomqvist, O., & Engel, J. A. (2000). Nicotinic mechanisms involved in the dopamine activating and reinforcing properties of ethanol. Behavioural Brain Research, 113(1-2), 85–96. https://doi.org/10.1016/S0166-4328(00)00203-5
  • Sofuoglu, M., & Mooney, M. (2009). Subjective responses to intravenous nicotine: Greater sensitivity in women than in men. Experimental and Clinical Psychopharmacology, 17(2), 63–69. https://doi.org/10.1037/a0015297
  • Tiffany, S. T., & Drobes, D. J. (1991). The development and initial validation of a questionnaire on smoking urges. British Journal of Addiction, 86(11), 1467–1476. https://doi.org/10.1111/j.1360-0443.1991.tb01732.x
  • Tzschentke, T. M. (2007). Review on CPP: Measuring reward with the conditioned place preference (CPP) paradigm: Update of the last decade. Addiction Biology, 12(3–4), 227–462. https://doi.org/10.1111/j.1369-1600.2007.00070.x
  • Wong, S. W., Lin, H. C., Piper, M. E., Siddiqui, A., & Buu, A. (2019). Measuring characteristics of e-cigarette consumption among college students. Journal of American College Health, 67(4), 338–347. https://doi.org/10.1080/07448481.2018.1481075

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.