161
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Boron phenyl alanine targeted ionic liquid decorated chitosan nanoparticles for mitoxantrone delivery to glioma cell line

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 899-909 | Received 29 Nov 2020, Accepted 12 Jul 2021, Published online: 27 Jul 2021

References

  • Almalik A, Alradwan I, Kalam MA, Alshamsan A. 2017. Effect of cryoprotection on particle size stability and preservation of chitosan nanoparticles with and without hyaluronate or alginate coating. Saudi Pharm J. 25(6):861–867.
  • Baksi R, Singh DP, Borse SP, Rana R, Sharma V, Nivsarkar M. 2018. In vitro and in vivo anticancer efficacy potential of quercetin loaded polymeric nanoparticles. Biomed Pharmacother. 106:1513–1526.
  • Behzadi S, Serpooshan V, Tao W, Hamaly M, Alkawareek M, Dreaden E, Brown D, Alkilany A, Farokhzad O, Mahmoudi M. 2017. Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev. 46(14):4218–4244.
  • Bhat M, Belagali SP, Shastry R, Vittal R. 2016. Synthesis, characterization and biological study of phenylalanine amide derivatives. Monatshefte Fuer Chemie – Chem Monthly. 147:2001–2008.
  • Bhumkar D, Pokharkar V. 2006. Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate: a technical note. AAPS PharmSciTech. 7(2):E50.
  • Boiardi A, Bartolomei M, Silvani A, Eoli M, Salmaggi A, Lamperti E, Milanesi I, Botturi A, Rocca P, Bodei L, et al. 2005. Intratumoral delivery of mitoxantrone in association with 90-Y radioimmunotherapy (RIT) in recurrent glioblastoma. J Neurooncol. 72(2):125–131.
  • Calvo P, Remuñán-López C, Vila-Jato JL, Alonso MJ. 1997. Novel hydrophilic chitosan-polyethylene oxide nanopraticles as protein carrier. J Appl Polym Sci. 63(1):125–132.
  • Carvalho PM, Felicio MR, Santos NC, Goncalves S, Domingues MM. 2018. Application of light scattering techniques to nanoparticle characterization and development. Front Chem. 6:237.
  • Chen Y, Wu D, Zhong W, Kuang S, Luo Q, Song L, He L, Feng X, Tao X. 2018. Evaluation of the PEG density in the PEGylated chitosan nanoparticles as a drug carrier for curcumin and mitoxantrone. Nanomaterials. 8(7):486.
  • Crooms RC, Goldstein NE, Diamond EL, Vickrey BG. 2020. Palliative care in high-grade glioma: a review. Brain Sci. 10(10):723.
  • Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, Khorasani S, Mozafari MR. 2018. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 10(2):57.
  • Deshayes S, Cabral H, Ishii T, Miura Y, Kobayashi S, Yamashita T, Matsumoto A, Miyahara Y, Nishiyama N, Kataoka K. 2013. Phenylboronic acid-installed polymeric micelles for targeting sialylated epitopes in solid tumors. J Am Chem Soc. 135(41):15501–15507.
  • Dick LD, Elliott MA, Ford SJ, Gordon MR, Halbert GW. 2011. Boron phenylalanine and related impurities: HPLC analysis, stability profile and degradation pathways. J Pharm Biomed Anal. 56(3):4.
  • Dimeco F, Li K, Tyler B, Wolf A, Brem H, Olivi A. 2002. Local delivery of mitoxantrone for the treatment of malignant brain tumors in rats. J Neurosurg. 97(5):1173–1178.
  • Doane T, Burda C. 2013. Nanoparticle mediated non-covalent drug delivery. Adv Drug Deliv Rev. 65(5):607–621.
  • Du JZ, Du XJ, Mao CQ, Wang J. 2011. Tailor-made dual pH-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery. J Am Chem Soc. 133(44):17560–17563.
  • Ellis JA, Cooke J, Singh-Moon RP, Wang M, Bruce JN, Emala CW, Bigio IJ, Joshi S. 2016. Safety, feasibility, and optimization of intra-arterial mitoxantrone delivery to gliomas. J Neurooncol. 130(3):449–454.
  • Elshaarawy R, Refaee A, El-Sawi E. 2016. Pharmacological performance of novel poly-(ionic liquid)-grafted Chitosan-N-salicylidene Schiff bases and their complexes. Carbohydr Polym. 146:376–387.
  • Fabregas A, Minarro M, Garcia-Montoya E, Perez-Lozano P, Carrillo C, Sarrate R, Sanchez N, Tico JR, Sune-Negre JM. 2013. Impact of physical parameters on particle size and reaction yield when using the ionic gelation method to obtain cationic polymeric chitosan-tripolyphosphate nanoparticles. Int J Pharm. 446(1-2):199–204.
  • Facchi S, Scariot D, Bueno P, Souza P, Figueiredo L, Follmann H, Nunes C, Monteiro J, Bonafé E, Nakamura C, et al. 2016. Preparation and cytotoxicity of N-modified chitosan nanoparticles applied in curcumin delivery. Int J Biol Macromol. 87:237–245.
  • Fan W, Yan W, Xu Z, Ni H. 2012. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids Surf B Biointerfaces. 90:21–27.
  • Fernandes SC, Oliveira L, Freire CS, Silvestre AJ, Neto CP, Gandini A, Desbriéres J. 2009. Novel transparent nanocomposite films based on chitosan and bacterial cellulose. Green Chem. 11(12):2023–2029.
  • Foundation KAW. 2020. Human Protein Atlas. [accessed 2020 March 06]. http://www.proteinatlas.org
  • Grenha A, Seijo B, Serra C, Remuñan-López C. 2007. Chitosan nanoparticle-loaded mannitol microspheres: structure and surface characterization. Biomacromolecules. 8(7):2072–2079.
  • Hosseinzadeh F, Mahkam M, Galehassadi M. 2012. Synthesis and characterization of ionic liquid functionalized polymers for drug delivery of an anti-inflammatory drug. Des Monomers Polym. 15(4):379–388.
  • Hu R, Zheng H, Cao J, Davoudi Z, Wang Q. 2017. Synthesis and in vitro characterization of carboxymethyl chitosan-CBA-doxorubicin conjugate nanoparticles as ph-sensitive drug delivery systems. J Biomed Nanotechnol. 13(9):1097–1105.
  • Jeong JY, Hong E-H, Lee SY, Lee J-Y, Song J-H, Ko S-H, Shim J-S, Choe S, Kim D-D, Ko H-J, et al. 2017. Boronic acid-tethered amphiphilic hyaluronic acid derivative-based nanoassemblies for tumor targeting and penetration. Acta Biomater. 53:414–426.
  • Kariminia S, Shamsipur A, Shamsipur M. 2016. Analytical characteristics and application of novel chitosan coated magnetic nanoparticles as an efficient drug delivery system for ciprofloxacin. Enhanced drug release kinetics by low-frequency ultrasounds. J Pharm Biomed Anal. 129:450–457.
  • Khalafi-Nezhad A, Mohammadi S. 2014. Chitosan supported ionic liquid: a recyclable wet and dry catalyst for the direct conversion of aldehydes into nitriles and amides under mild conditions. RSC Adv. 4(27):13782.
  • Kim TH, Ihm JE, Choi YJ, Nah JW, Cho CS. 2003. Efficient gene delivery by urocanic acid-modified chitosan. J Control Release. 93(3):389–402.
  • Koukaras EN, Papadimitriou SA, Bikiaris DN, Froudakis GE. 2012. Insight on the formation of chitosan nanoparticles through ionotropic gelation with tripolyphosphate. Mol Pharm. 9(10):2856–2862.
  • Kumar A, Samal SK, Dash R, Ojha U. 2014. Polyacryloyl hydrazide based injectable & stimuli responsive hydrogels with tunable properties. J Mater Chem B. 2(42):7429–7439.
  • Kumari A, Yadav SK, Yadav SC. 2010. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces. 75(1):1–18.
  • Lam P, Lin R, Steinmetz NF. 2018. Delivery of mitoxantrone using a plant virus-based nanoparticle for the treatment of glioblastomas. J Mater Chem B. 6(37):5888–5895.
  • Li P-Y, Cheng K-Y, Zheng X-C, Liu P, Xu X-J. 2016. Facile synthesis of water-soluble graphene-based composite: non-covalently functionalized with chitosan-ionic liquid conjugation. Funct Mater Lett. 09(03):1650045.
  • Lu B, Li Y, Wang Z, Wang B, Pan X, Zhao W, Ma X, Zhang J. 2019. Dual responsive hyaluronic acid graft poly(ionic liquid) block copolymer micelle for efficient CD44 targeted antitumor drug delivery. New J Chem. 43(31):12275–12282.
  • Matsumoto A, Cabral H, Sato N, Kataoka K, Miyahara Y. 2010. Assessment of tumor metastasis by the direct determination of cell-membrane sialic acid expression. Angew Chem Int Ed Engl. 49(32):5494–5497.
  • Neugebauer D, Mielańczyk A, Bielas R, Odrobińska J, Kupczak M, Niesyto K. 2019. Ionic polymethacrylate based delivery systems: effect of carrier topology and drug loading. Pharmaceutics. 11(7):317–337.
  • Nguyen T, Nguyen T, Wang S-L, Vo T, Dzung N. 2017. Preparation of chitosan nanoparticles by TPP ionic gelation combined with spray drying, and the antibacterial activity of chitosan nanoparticles and a chitosan nanoparticle–amoxicillin complex. Res Chem Intermed. 43(6):3527–3537.
  • Park J, Han TH, Lee K, Han SS, Hwang JJ, Moon D, Kim SY, Cho YW. 2006. N-acetyl histidine-conjugated glycol chitosan self-assembled nanoparticles for intracytoplasmic delivery of drugs: endocytosis, exocytosis and drug release. J Control Release. 115(1):37–45.
  • Petros RA, DeSimone JM. 2010. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 9(8):615–627.
  • Pillai CKS, Paul W, Sharma CP. 2009. Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci. 34(7):641–678.
  • Rejinold NS, Sreerekha PR, Chennazhi KP, Nair SV, Jayakumar R. 2011. Biocompatible, biodegradable and thermo-sensitive chitosan-g-poly (N-isopropylacrylamide) nanocarrier for curcumin drug delivery. Int J Biol Macromol. 49(2):161–172.
  • Sadio A, Gustafsson JK, Pereira B, Gomes CP, Hansson GC, David L, Pego AP, Almeida R. 2014. Modified-chitosan/siRNA nanoparticles downregulate cellular CDX2 expression and cross the gastric mucus barrier. PLoS One. 9(6):e99449.
  • Shergalis A, Bankhead A, 3rd, Luesakul U, Muangsin N, Neamati N. 2018. Current challenges and opportunities in treating glioblastoma. Pharmacol Rev. 70(3):412–445.
  • Soares P, Sousa A, Silva J, Ferreira I, Novo C, Borges JP. 2016. Chitosan-based nanoparticles as drug delivery systems for doxorubicin: optimization and modelling. Carbohydr Polym. 147:304–312.
  • Son G-H, Lee B-J, Cho C-W. 2017. Mechanisms of drug release from advanced drug formulations such as polymeric-based drug-delivery systems and lipid nanoparticles. J Pharma Investig. 47(4):287–296.
  • Sunasee R, Hemraz U. 2018. Synthetic strategies for the fabrication of cationic surface-modified cellulose nanocrystals. Fibers. 6(1):15.
  • Sundaramurthy A, Krishnamoorthy G, Ramkumar KM, Raichur AM. 2017. Preparation of collagen peptide functionalized chitosan nanoparticles by ionic gelation method: an effective carrier system for encapsulation and release of doxorubicin for cancer drug delivery. Mater Sci Eng C. 70:378–385.
  • Teulon J-M, Godon C, Chantalat L, Moriscot C, Cambedouzou J, Odorico M, Ravaux J, Podor R, Gerdil A, Habert A, et al. 2018. On the operational aspects of measuring nanoparticle sizes. Nanomaterials. 9(1):18.
  • Tığlı Aydın RS, Pulat M. 2012. 5-fluorouracil encapsulated chitosan nanoparticles for pH-stimulated drug delivery: evaluation of controlled release kinetics. J Nanomater. 2012:1–10.
  • Tiyaboonchai W. 2003. Chitosan nanoparticles: a promising system for drug delivery. Naresuan Univ J. 11:51–66.
  • Unsoy G, Khodadust R, Serap Y, Pelin M, Gunduz U. 2014. Synthesis of doxorubicin loaded magnetic chitosan nanoparticles for pH responsive targeted drug delivery. Euro J Pharma Sci. 62:243–250.
  • Varshosaz J, Hassanzadeh F, Sadeghi H, Ghelich Khan Z, Rostami M. 2013. Retinoic acid decorated albumin-chitosan nanoparticles for targeted delivery of doxorubicin hydrochloride in hepatocellular carcinoma. J Nanomater. 2013:1–12.
  • Vuaroqueaux V, Urban P, Labuhn M, Delorenzi M, Wirapati P, Benz CC, Flury R, Dieterich H, Spyratos F, Eppenberger U, et al. 2007. Low E2F1 transcript levels are a strong determinant of favorable breast cancer outcome. Breast Cancer Res. 9(3):R33.
  • Wang X, Tang H, Wang C, Zhang J, Wu W, Jiang X. 2016. Phenylboronic acid-mediated tumor targeting of chitosan nanoparticles. Theranostics. 6(9):1378–1392.
  • Wang J, Wu W, Jiang X. 2015. Nanoscaled boron-containing delivery systems and therapeutic agents for cancer treatment. Nanomedicine. 10(7):1149–1163.
  • Wei Y, Huang W, Zhou Y, Zhang S, Hua D, Zhu X. 2013. Modification of chitosan with carboxyl-functionalized ionic liquid for anion adsorption. Int J Biol Macromol. 62:365–369.
  • Xiao B, Ma P, Viennois E, Merlin D. 2016. Urocanic acid-modified chitosan nanoparticles can confer anti-inflammatory effect by delivering CD98 siRNA to macrophages. Colloids Surf B Biointerfaces. 143:186–193.
  • Zamani M, Naderi E, Aghajanzadeh M, Naseri M, Sharafi A, Danafar H. 2019. Co1−XZnxFe2O4 based nanocarriers for dual-targeted anticancer drug delivery: synthesis, characterization and in vivo and in vitro biocompatibility study. J Mol Liq. 274:60–67.
  • Zhang H, Wu F, Li Y, Yang X, Huang J, Lv T, Zhang Y, Chen J, Chen H, Gao Y, et al. 2016. Chitosan-based nanoparticles for improved anticancer efficacy and bioavailability of mifepristone. Beilstein J Nanotechnol. 7:1861–1870.
  • Zhang J, Zhou X, Zhou Z, Chen H, Chen L. 2014. Preparation and characterization of L-phenylalanine modified chitosan resin for aromatic amino acid adsorption. Macromol Res. 22(5):515–522.
  • Zhao F, Zhao Y, Liu Y, Chang X, Chen C, Zhao Y. 2011. Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials. Small. 7(10):1322–1337.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.