108
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Fabrication of controlled-release polymeric microneedles containing progesterone-loaded self-microemulsions for transdermal delivery

, , , , , & show all
Pages 98-111 | Received 19 Jul 2023, Accepted 17 Jan 2024, Published online: 03 Feb 2024

References

  • Alkilani AZ, McCrudden MT, Donnelly RF. 2015. Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics. 7(4):438–470. eng. doi:10.3390/pharmaceutics7040438.
  • Altuntaş E, Tekko IA, Vora LK, Kumar N, Brodsky R, Chevallier O, McAlister E, Kurnia Anjani Q, McCarthy HO, Donnelly RF. 2022. Nestorone nanosuspension-loaded dissolving microneedles array patch: a promising novel approach for ‘on-demand’ hormonal female-controlled peritcoital contraception. Int J Pharm. 614:121422. doi:10.1016/j.ijpharm.2021.121422.
  • Aumklad P, Suriyaamporn P, Patrojanasophon P. 2022. Formulation and optimization of progesterone microemulsion using simplex lattice mixture design. KEM. 914:75–80. doi:10.4028/p-rj4fmr.
  • Bartnikowski M, Dargaville T, Ivanovski S, Hutmacher D. 2019. Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment. Prog Polym Sci. 96:1–20. doi:10.1016/j.progpolymsci.2019.05.004.
  • Bhatnagar S, Gadeela PR, Thathireddy P, Venuganti VVK. 2019. Microneedle-based drug delivery: materials of construction. J Chem Sci. 131(9):90. doi:10.1007/s12039-019-1666-x.
  • Biruss B, Valenta C. 2008. The advantage of polymer addition to a non-ionic oil in water microemulsion for the dermal delivery of progesterone. Int J Pharm. 349(1–2):269–273. doi:10.1016/j.ijpharm.2007.08.003.
  • Cerchiara T, Luppi B, Bigucci F, Zecchi V. 2003. Effect of chitosan on progesterone release from hydroxypropyl-beta-cyclodextrin complexes. Int J Pharm. 258(1–2):209–215. eng. doi:10.1016/s0378-5173(03)00202-3.
  • Chavda VP, Shah D. 2017. Chapter 25 - Self-emulsifying delivery systems: one step ahead in improving solubility of poorly soluble drugs. In: Ficai A, Grumezescu AM, editors. Nanostructures for Cancer Therapy. Amsterdam: Elsevier; p. 653–718.
  • Coneac G, Vlaia V, Olariu I, Muţ AM, Anghel DF, Ilie C, Popoiu C, Lupuleasa D, Vlaia L. 2015. Development and evaluation of new microemulsion-based hydrogel formulations for topical delivery of fluconazole. AA P S. 16(4):889–904. eng. doi:10.1208/s12249-014-0275-8.
  • Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, Khorasani S, Mozafari MR. 2018. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 10(2):57. eng. doi:10.3390/pharmaceutics10020057.
  • Dokania S, Joshi AK. 2015. Self-microemulsifying drug delivery system (SMEDDS) – challenges and road ahead. Drug Deliv. 22(6):675–690. doi:10.3109/10717544.2014.896058.
  • Du JY, Sanchez P, Kim L, Azen CG, Zava DT, Stanczyk FZ. 2013. Percutaneous progesterone delivery via cream or gel application in postmenopausal women: a randomized cross-over study of progesterone levels in serum, whole blood, saliva, and capillary blood. Menopause. 20(11):1169–1175. doi:10.1097/GME.0b013e31828d39a2.
  • Eid A, El Enshasy H, Aziz R, Elmarzugi N. 2014. The preparation and evaluation of self-nanoemulsifying systems containing Swietenia oil and an examination of its anti-inflammatory effects. Int J Nanomedicine. 9:4685–4695. doi:10.2147/IJN.S66180.
  • El Maghraby GM. 2010. Self-microemulsifying and microemulsion systems for transdermal delivery of indomethacin: effect of phase transition. Colloids Surf B Biointerfaces. 75(2):595–600. doi:10.1016/j.colsurfb.2009.10.003.
  • Goldštajn M, Mikuš M, Ferrari FA, Bosco M, Uccella S, Noventa M, Török P, Terzic S, Laganà AS, Garzon S. 2022. Effects of transdermal versus oral hormone replacement therapy in postmenopause: a systematic review. Arch Gynecol Obstet. 307(6):1727–1745. doi:10.1007/s00404-022-06647-5.
  • Gorzelanny C, Mess C, Schneider SW, Huck V, Brandner JM. 2020. Skin barriers in dermal drug delivery: which barriers have to be overcome and how can we measure them? Pharmaceutics. 12(7):684. eng. doi:10.3390/pharmaceutics12070684.
  • Hermann AC, Nafziger AN, Victory J, Kulawy R, Rocci ML, Jr, Bertino Jr JS. 2005. Over-the-counter progesterone cream produces significant drug exposure compared to a food and drug administration-approved oral progesterone product. J Clin Pharmacol. 45(6):614–619. doi:10.1177/0091270005276621.
  • Heylings JR, Davies DJ, Burton R. 2018. Dermal absorption of testosterone in human and pig skin in vitro. Toxicol in Vitro. 48:71–77. eng. doi:10.1016/j.tiv.2017.12.014.
  • Jaiswal P, Aggarwal G, Harikumar SL, Singh K. 2014. Development of self-microemulsifying drug delivery system and solid-self-microemulsifying drug delivery system of telmisartan. Int J Pharm Investig. 4(4):195–206. eng. doi:10.4103/2230-973X.143123.
  • Jamaledin R, Makvandi P, Yiu CKY, Agarwal T, Vecchione R, Sun W, Maiti TK, Tay FR, Netti PA. 2020. Engineered microneedle patches for controlled release of active compounds: recent advances in release profile tuning. Advanced Therapeutics. 3(12):2000171. doi:10.1002/adtp.202000171.
  • Javadzadeh Y, Jafari-Navimipour B, Nokhodchi A. 2007. Liquisolid technique for dissolution rate enhancement of a high dose water-insoluble drug (carbamazepine). Int J Pharm. 341(1-2):26–34. eng. doi:10.1016/j.ijpharm.2007.03.034.
  • Kamal MM, Nazzal S. 2018. Development of a new class of sulforaphane-enabled self-emulsifying drug delivery systems (SFN-SEDDS) by high throughput screening: a case study with curcumin. Int J Pharm. 539(1–2):147–156. doi:10.1016/j.ijpharm.2018.01.045.
  • Kathe K, Kathpalia H. 2017. Film forming systems for topical and transdermal drug delivery. Asian J Pharm Sci. 12(6):487–497. eng. doi:10.1016/j.ajps.2017.07.004.
  • L'Hermite M. 2013. HRT optimization, using transdermal estradiol plus micronized progesterone, a safer HRT. Climacteric. 16 (1):44–53. eng.
  • Laracuente M-L, Yu MH, McHugh KJ. 2020. Zero-order drug delivery: state of the art and future prospects. J Control Release. 327:834–856. doi:10.1016/j.jconrel.2020.09.020.
  • Larrañeta E, Moore J, Vicente-Pérez EM, González-Vázquez P, Lutton R, Woolfson AD, Donnelly RF. 2014. A proposed model membrane and test method for microneedle insertion studies. Int J Pharm. 472(1-2):65–73. doi:10.1016/j.ijpharm.2014.05.042.
  • Lee JW, Park JH, Prausnitz MR. 2008. Dissolving microneedles for transdermal drug delivery. Biomaterials. 29(13):2113–2124. eng. doi:10.1016/j.biomaterials.2007.12.048.
  • Lee Y, Li W, Tang J, Schwendeman SP, Prausnitz MR. 2021. Immediate detachment of microneedles by interfacial fracture for sustained delivery of a contraceptive hormone in the skin. J Control Release. 337:676–685. eng. doi:10.1016/j.jconrel.2021.08.012.
  • Lopes LB, Murphy N, Nornoo A. 2009. Enhancement of transdermal delivery of progesterone using medium-chain mono and diglycerides as skin penetration enhancers. Pharm Dev Technol. 14(5):524–529. doi:10.1080/10837450902814180.
  • Lu GW, Gao P. 2010. CHAPTER 3 - Emulsions and microemulsions for topical and transdermal Drug Delivery. In: Kulkarni VS, editor. Handbook of non-invasive drug delivery systems. Boston: William Andrew Publishing; p. 59–94.
  • Mandić J, Zvonar Pobirk A, Vrečer F, Gašperlin M. 2017. Overview of solidification techniques for self-emulsifying drug delivery systems from industrial perspective. Int J Pharm. 533(2):335–345. eng. doi:10.1016/j.ijpharm.2017.05.036.
  • Mueck AO. 2012. Postmenopausal hormone replacement therapy and cardiovascular disease: the value of transdermal estradiol and micronized progesterone. Climacteric. 15 Suppl 1(sup1):11–17. eng. doi:10.3109/13697137.2012.669624.
  • Naik A, Kalia YN, Guy RH. 2000. Transdermal drug delivery: overcoming the skin’s barrier function. Pharm Sci Technol Today. 3(9):318–326. eng. doi:10.1016/s1461-5347(00)00295-9.
  • Nepal PR, Han HK, Choi HK. 2010. Preparation and in vitro-in vivo evaluation of Witepsol H35 based self-nanoemulsifying drug delivery systems (SNEDDS) of coenzyme Q(10). Eur J Pharm Sci. 39(4):224–232. eng. doi:10.1016/j.ejps.2009.12.004.
  • Nowak E, Kovalchuk NM, Che Z, Simmons MJH. 2016. Effect of surfactant concentration and viscosity of outer phase during the coalescence of a surfactant-laden drop with a surfactant-free drop. Colloids Surf, A. 505:124–131. doi:10.1016/j.colsurfa.2016.02.016.
  • Park JH, Allen MG, Prausnitz MR. 2006. Polymer microneedles for controlled-release drug delivery. Pharm Res. 23(5):1008–1019. eng. doi:10.1007/s11095-006-0028-9.
  • Patel M, Patel R. 2019. Linagliptin loaded Solid-SMEEDS for enhanced solubility and dissolution: formulation development and optimization by D-optimal design. J Drug Delivery Ther. 9(2):47–56. doi:10.22270/jddt.v9i2.2465.
  • Pouton CW. 2000. Lipid formulations for oral administration of drugs: non-emulsifying, self-emulsifying and 'self-microemulsifying’ drug delivery systems. Eur J Pharm Sci. 11 Suppl 2(Suppl 2):S93–S98. eng. doi:10.1016/s0928-0987(00)00167-6.
  • Prior JC. 2018. Progesterone for treatment of symptomatic menopausal women. Climacteric. 21(4):358–365. doi:10.1080/13697137.2018.1472567.
  • Rathore C, Hemrajani C, Sharma AK, Gupta PK, Jha NK, Aljabali AAA, Gupta G, Singh SK, Yang J-C, Dwivedi RP, et al. 2023. Self-nanoemulsifying drug delivery system (SNEDDS) mediated improved oral bioavailability of thymoquinone: optimization, characterization, pharmacokinetic, and hepatotoxicity studies. Drug Deliv Transl Res. 13(1):292–307. doi:10.1007/s13346-022-01193-8.
  • Saraswathy K, Agarwal G, Srivastava A. 2020. Hyaluronic acid microneedles-laden collagen cryogel plugs for ocular drug delivery. J Appl Polymer Sci. 137(42):49285. doi:10.1002/app.49285.
  • Septiyanti M, Meliana Y, Aiman S, Ghozali M, Triwulandari E, Putri R. 2018. Formulation of palm oil based surfactant for fungicide emulsifiable concentrate. International Symposium on Innovative Bio-Production Indonesia; 2018 Nov 1; Bogor, Indonesia.
  • Sheshala R, Anuar NK, Abu Samah NH, Wong TW. 2019. In vitro drug dissolution/permeation testing of nanocarriers for skin application: a comprehensive review. AAPSci. 20(5):164. eng.
  • Simon GA, Maibach HI. 2000. The pig as an experimental animal model of percutaneous permeation in man: qualitative and quantitative observations–an overview. Skin Pharmacol Appl Skin Physiol. 13(5):229–234. eng. doi:10.1159/000029928.
  • A S, Nm S, Cb P, Rk K, V VN. 2020. Micro emulsions: an Overview And Pharmaceutical Applications. World J Curr Med Pharm Res. 2(2):201–205.
  • Stanczyk FZ. 2014. Treatment of postmenopausal women with topical progesterone creams and gels: are they effective? Climacteric. 17 Suppl 2(sup2):8–11. doi:10.3109/13697137.2014.944496.
  • Stevenson JC, Crook D, Godsland IF, Lees B, Whitehead MI. 1993. Oral versus transdermal hormone replacement therapy. Int J Fertil Menopausal Stud. 38Suppl (1):30–35. eng.
  • Suriyaamporn P, Opanasopit P, Ngawhirunpat T, Rangsimawong W. 2021. Computer-aided rational design for optimally Gantrez® S-97 and hyaluronic acid-based dissolving microneedles as a potential ocular delivery system. J Drug Delivery Sci Technol. 61:102319. doi:10.1016/j.jddst.2020.102319.
  • Suriyaamporn P, Opanasopit P, Ngawhirunpat T, Rangsimawong W. 2022. Development and evaluation of a fast dissolving effervescent microneedles patch for transdermal application. Sci, Eng Health Stud. 16:22050010.
  • Suriyaamporn P, Opanasopit P, Rangsimawong W, Ngawhirunpat T. 2022. Optimal design of novel microemulsions-based two-layered dissolving microneedles for delivering fluconazole in treatment of fungal eye infection. Pharmaceutics. 14(3):472. doi:10.3390/pharmaceutics14030472.
  • Suriyaamporn P, Rangsimawong W, Opanasopit P, Ngawhirunpat T. 2020. Development and Characterization of Gantrez® S-97 and Hyaluronic Acid Microneedles for Transdermal Fluorescein Sodium Delivery. KEM. 859:125–131. doi:10.4028/www.scientific.net/KEM.859.125.
  • Tekko IA, Chen G, Domínguez-Robles J, Thakur RRS, Hamdan IMN, Vora L, Larrañeta E, McElnay JC, McCarthy HO, Rooney M, et al. 2020. Development and characterisation of novel poly (vinyl alcohol)/poly (vinyl pyrrolidone)-based hydrogel-forming microneedle arrays for enhanced and sustained transdermal delivery of methotrexate. Int J Pharm. 586:119580. doi:10.1016/j.ijpharm.2020.119580.
  • Ujhelyi Z, Vecsernyés M, Fehér P, Kósa D, Arany P, Nemes D, Sinka D, Vasvári G, Fenyvesi F, Váradi J, et al. 2018. Physico-chemical characterization of self-emulsifying drug delivery systems. Drug Discov Today Technol. 27:81–86. eng. doi:10.1016/j.ddtec.2018.06.005.
  • Valenta C, Biebel R. 1998. In vitro release study of transdermal delivery systems of progesterone. Drug Dev Ind Pharm. 24(2):187–191. eng. doi:10.3109/03639049809085606.
  • van Staden D, Du Plessis J, Viljoen J. 2020. Development of topical/transdermal self-emulsifying drug delivery systems, not as simple as expected. Sci Pharm. 88(2):17. doi:10.3390/scipharm88020017.
  • Vinarov Z, Dobreva P, Tcholakova S. 2018. Effect of surfactant molecular structure on progesterone solubilization. J Drug Delivery Sci Technol. 43:44–49. doi:10.1016/j.jddst.2017.09.014.
  • Waghule T, Singhvi G, Dubey SK, Pandey MM, Gupta G, Singh M, Dua K. 2019. Microneedles: a smart approach and increasing potential for transdermal drug delivery system. Biomed Pharmacother. 109:1249–1258. doi:10.1016/j.biopha.2018.10.078.
  • Wang SH, Zhang LC, Lin F, Sa XY, Zuo JB, Shao QX, Chen GS, Zeng S. 2005. Controlled release of levonorgestrel from biodegradable poly(D,L-lactide-co-glycolide) microspheres: in vitro and in vivo studies. Int J Pharm. 301(1-2):217–225. eng. doi:10.1016/j.ijpharm.2005.05.038.
  • Wang T, Wang R, Chen Z, Zhong Q. 2017. Magnetization of eugenol to fabricate magnetic-responsive emulsions for targeted delivery of caffeic acid phenethyl ester. R Soc Chem Adv. 7(69):43455–43463. doi:10.1039/C7RA08167G.
  • Wong BS, Teoh SH, Kang L. 2012. Polycaprolactone scaffold as targeted drug delivery system and cell attachment scaffold for postsurgical care of limb salvage. Drug Deliv Transl Res. 2(4):272–283. eng. doi:10.1007/s13346-012-0096-9.
  • Xi J, Chang Q, Chan CK, Meng ZY, Wang GN, Sun JB, Wang YT, Tong HH, Zheng Y. 2009. Formulation development and bioavailability evaluation of a self-nanoemulsified drug delivery system of oleanolic acid. AAPharm Sci. 10(1):172–182. eng. doi:10.1208/s12249-009-9190-9.
  • Yalkowsky SH, He Y, Jain P. 2016. Handbook of aqueous solubility data. Bioscience, Physical Sciences. 2nd ed. Boca Raton: CRC Press, 2010.
  • Zupančič O, Rohrer J, Thanh Lam H, Grießinger JA, Bernkop-Schnürch A. 2017. Development and in vitro characterization of self-emulsifying drug delivery system (SEDDS) for oral opioid peptide delivery. Drug Dev Ind Pharm. 43(10):1694–1702. eng. doi:10.1080/03639045.2017.1338722.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.