34
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Quercetin nanocrystals prepared using a microfluidic chip with improved in vitro dissolution

, , , , , & show all
Pages 143-152 | Received 10 Apr 2023, Accepted 03 Feb 2024, Published online: 22 Feb 2024

References

  • Ali HSM, York P, Ali AMA, Blagden N. 2011. Hydrocortisone nanosuspensions for ophthalmic delivery: a comparative study between microfluidic nanoprecipitation and wet milling. J Control Release. 149(2):175–181. doi: 10.1016/j.jconrel.2010.10.007.
  • Bilati U, Allémann E, Doelker E. 2005. Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles. Eur J Pharm Sci. 24(1):67–75. doi: 10.1016/j.ejps.2004.09.011.
  • Chen H, Khemtong C, Yang X, Chang X, Gao J. 2011. Nanonization strategies for poorly water-soluble drugs. Drug Discov Today. 16(7–8):354–360. doi: 10.1016/j.drudis.2010.02.009.
  • Chen M, Li W, Zhang X, Dong Y, Hua Y, Zhang H, Gao J, Zhao L, Li Y, Zheng A, et al. 2017. In vitro and in vivo evaluation of SN-38 nanocrystals with different particle sizes. Int J Nanomedicine. 12:5487–5500. doi: 10.2147/IJN.S133816.
  • Chen-Yu G, Chun-Fen Y, Qi-Lu L, Qi T, Yan-Wei X, Wei-na L, Guang-Xi Z. 2012. Development of a quercetin-loaded nanostructured lipid carrier formulation for topical delivery. Int J Pharm. 430(1-2):292–298. doi: 10.1016/j.ijpharm.2012.03.042.
  • Cui G-J, Xu L-M, Zhou Y, Zhang J-J, Wang J-X, Chen J-F. 2013. Microfluidic fabrication of silybin nanodispersion with high dissolution rate and tunable sizes. Chem Eng J. 222:512–519. doi: 10.1016/j.cej.2013.02.101.
  • Ghosh I, Bose S, Vippagunta R, Harmon F. 2011. Nanosuspension for improving the bioavailability of a poorly soluble drug and screening of stabilizing agents to inhibit crystal growth. Int J Pharm. 409(1-2):260–268. doi: 10.1016/j.ijpharm.2011.02.051.
  • Haimhoffer Á, Rusznyák Á, Réti-Nagy K, Vasvári G, Váradi J, Vecsernyés M, Bácskay I, Fehér P, Ujhelyi Z, Fenyvesi F, et al. 2019. Cyclodextrins in drug delivery systems and their effects on biological barriers. Sci Pharm. 87(4):33. doi: 10.3390/scipharm87040033.
  • Jermain SV, Brough C, Williams RO. 2018. Amorphous solid dispersions and nanocrystal technologies for poorly water-soluble drug delivery–an update. Int J Pharm. 535(1–2):379–392. doi: 10.1016/j.ijpharm.2017.10.051.
  • Kakran M, Sahoo NG, Tan I-L, Li L. 2012. Preparation of nanoparticles of poorly water-soluble antioxidant curcumin by antisolvent precipitation methods. J Nanopart Res. 14(3):1–11. doi: 10.1007/s11051-012-0757-0.
  • Karnik R, Gu F, Basto P, Cannizzaro C, Dean L, Kyei-Manu W, Langer R, Farokhzad OC. 2008. Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett. 8(9):2906–2912. doi: 10.1021/nl801736q.
  • Keck CM, Müller RH. 2006. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenization . Eur J Pharm Biopharm. 62(1):3–16. doi: 10.1016/j.ejpb.2005.05.009.
  • Khan S, Matas M d, Zhang J, Anwar J. 2013. Nanocrystal preparation: low-energy precipitation method revisited. Cryst Growth Des. 13(7):2766–2777. doi: 10.1021/cg4000473.
  • Li X-S, Wang J-X, Shen Z-G, Zhang P-Y, Chen J-F, Yun J. 2007. Preparation of uniform prednisolone microcrystals by a controlled microprecipitation method. Int J Pharm. 342(1-2):26–32. doi: 10.1016/j.ijpharm.2007.04.025.
  • Liang H, Sun C, Feng Z, Wang X, Kong L, Zhu F, Yao J, Yuan X, Liu Z, Zhang G, et al. 2022. Study on integrated pharmacokinetics of the component-based Chinese medicine of ginkgo biloba leaves based on nanocrystalline solid dispersion technology. Int J Nanomedicine. 17:4039–4057. doi: 10.2147/IJN.S379736.
  • Lindfors L, Skantze P, Skantze U, Westergren J, Olsson U. 2007. Amorphous drug nanosuspensions. 3. Particle dissolution and crystal growth. Langmuir. 23(19):9866–9874. doi: 10.1021/la700811b.
  • Lu M, Ozcelik A, Grigsby CL, Zhao Y, Guo F, Leong KW, Huang TJ. 2016. Microfluidic hydrodynamic focusing for synthesis of nanomaterials. Nano Today. 11(6):778–792. doi: 10.1016/j.nantod.2016.10.006.
  • Merisko-Liversidge E, Liversidge GG. 2011. Nanosizing for oral and parenteral drug delivery: a perspective on formulating poorly-water soluble compounds using wet media milling technology. Adv Drug Deliv Rev. 63(6):427–440. doi: 10.1016/j.addr.2010.12.007.
  • Nguyen NT, Wereley ST, Shaegh SAM. 2019. Fundamentals and applications of microfluidics. Boston: Artech House.
  • Qiao Y, Cao Y, Yu K, Zong L, Pu X. 2020. Preparation and antitumor evaluation of quercetin nanosuspensions with synergistic efficacy and regulating immunity. Int J Pharm. 589:119830. doi: 10.1016/j.ijpharm.2020.119830.
  • Radtke M. 2001. Pure drug nanoparticles for the formulation of poorly soluble drugs. New Drugs. 3:62–68.
  • Rahimi M, Valeh-e-Sheyda P, Rashidi H. 2017. Statistical optimization of curcumin nanosuspension through liquid anti-solvent precipitation (LASP) process in a microfluidic platform: box-Behnken design approach. Korean J Chem Eng. 34(11):3017–3027. doi: 10.1007/s11814-017-0201-3.
  • Ren K-W, Li Y-H, Wu G, Ren J-Z, Lu H-B, Li Z-M, Han X-W. 2017. Quercetin nanoparticles display antitumor activity via proliferation inhibition and apoptosis induction in liver cancer cells. Int J Oncol. 50(4):1299–1311. doi: 10.3892/ijo.2017.3886.
  • Sareen S, Mathew G, Joseph L. 2012. Improvement in solubility of poor water-soluble drugs by solid dispersion. Int J Pharm Investig. 2(1):12–17. doi: 10.4103/2230-973X.96921.
  • Sherikar A, Siddique MUM, More M, Goyal SN, Milivojevic M, Alkahtani S, Alarifi S, Hasnain MS, Nayak AK. 2021. Preparation and evaluation of silymarin-loaded solid eutectic for enhanced anti-inflammatory, hepatoprotective effect: in vitro-in vivo prospect. Oxid Med Cell Longev. 2021:1818513–1818538. doi: 10.1155/2021/1818538.
  • Shrimal P, Jadeja G, Naik J, Patel S. 2020. A review on novel methodologies for drug nanoparticle preparation: microfluidic approach . Chem Eng Res Des. 153:728–756. doi: 10.1016/j.cherd.2019.11.031.
  • Shrimal P, Jadeja G, Naik J, Patel SR. 2019. Continuous microchannel precipitation to enhance the solubility of telmisartan with poloxamer 407 using Box-Behnken design approach. J Drug Deliv Sci Technol. 53(C):101225–101225.
  • Takiyama H. 2012. Supersaturation operation for quality control of crystalline particles in solution crystallization. Adv Powder Technol. 23(3):273–278. doi: 10.1016/j.apt.2012.04.009.
  • Valencia PM, Basto PA, Zhang L, Rhee M, Langer R, Farokhzad OC, Karnik R. 2010. Single-step assembly of homogenous lipid-polymeric and lipid-quantum dot nanoparticles enabled by microfluidic rapid mixing. ACS Nano. 4(3):1671–1679. doi: 10.1021/nn901433u.
  • Viçosa A, Letourneau J-J, Espitalier F, Inês Ré M. 2012. An innovative antisolvent precipitation process as a promising technique to prepare ultrafine rifampicin particles. J Cryst Growth. 342(1):80–87. doi: 10.1016/j.jcrysgro.2011.09.012.
  • Wang J-X, Zhang Q-X, Zhou Y, Shao L, Chen J-F. 2010. Microfluidic synthesis of amorphous cefuroxime axetil nanoparticles with size-dependent and enhanced dissolution rate. Chem Eng J. 162(2):844–851. doi: 10.1016/j.cej.2010.06.022.
  • Weigl BH, Bardell RL, Cabrera CR. 2003. Lab-on-a-chip for drug development. Adv Drug Deliv Rev. 55(3):349–377. doi: 10.1016/s0169-409x(02)00223-5.
  • Winterton JD, Myers DR, Lippmann JM, Pisano AP, Doyle FM. 2008. A novel continuous microfluidic reactor design for the controlled production of high-quality semiconductor nanocrystals. J Nanopart Res. 10(6):893–905. doi: 10.1007/s11051-007-9345-0.
  • Xie YJ, Lan L, Wang JX, et al. 2012. Preparation of ultrafine powder of artemisinin by antisolvent recrystallization. J Chem Eng. 63(5):1607–1614.
  • Yang T, Yi FP, Zhi WZ, et al. 2021. Advances in nanocrystalline drug preparation techniques. J Pharm Sci. 56(7):1902–1910.
  • Yuan Z, Liu J, Yang YN, He Y. 2021. Research and application prospect of nano-preparations prepared by microfluidic technology. Chin J Pharm. 52(04):440–450.
  • Zhang H-X, Wang J-X, Shao L, Chen J-F. 2010. Microfluidic fabrication of monodispersed pharmaceutical colloidal spheres of atorvastatin calcium with tunable sizes. Ind Eng Chem Res. 49(9):4156–4161. doi: 10.1021/ie901365w.
  • Zhang H-X, Wang J-X, Zhang Z-B, Le Y, Shen Z-G, Chen J-F. 2009. Micronization of atorvastatin calcium by antisolvent precipitation process. Int J Pharm. 374(1-2):106–113. doi: 10.1016/j.ijpharm.2009.02.015.
  • Zhao H, Wang J-X, Wang Q-A, Chen J-F, Yun J. 2007. Controlled liquid antisolvent precipitation of hydrophobic pharmaceutical nanoparticles in a microchannel reactor. Ind Eng Chem Res. 46(24):8229–8235. doi: 10.1021/ie070498e.
  • Zhu W-Z, Wang J-X, Shao L, Zhang H-x, Zhang Q-x, Chen J-F. 2010. Liquid antisolvent preparation of amorphous cefuroxime axetil nanoparticles in a tube-in-tube microchannel reactor. Int J Pharm. 395(1-2):260–265. doi: 10.1016/j.ijpharm.2010.05.018.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.