70
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Preparation, in vitro anti-tumour activity and in vivo pharmacokinetics of RGD-decorated liposomes loaded with shikonin

, , , , , , , & show all
Pages 153-163 | Received 17 Aug 2023, Accepted 03 Feb 2024, Published online: 19 Feb 2024

References

  • Administration F D.USFDA. 2001. Guidance for industry: bioanalytical method validation. http://www.fda.gov./cder/guidance/4252fnl.pdf,66.
  • Awasthi VD, Garcia D, Goins BA, Phillips WT. 2003. Circulation and biodistribution profiles of long-circulating PEG-liposomes of various sizes in rabbits. Int J Pharm. 253(1-2):121–132. doi: 10.1016/s0378-5173(02)00703-2.
  • Bozzuto G, Molinari A. 2015. Liposomes as nanomedical devices. Int J Nanomedicine. 10:975–999. doi: 10.2147/IJN.S68861.
  • Breslin S, O'Driscoll L. 2013. Three-dimensional cell culture: the missing link in drug discovery. Drug Discov Today. 18(5-6):240–249. doi: 10.1016/j.drudis.2012.10.003.
  • Brooks PC, Clark RA, Cheresh DA. 1994. Requirement of vascular integrin alphav-beta3 for angiogenesis. Science. 264(5158):569–571. doi: 10.1126/science.7512751.
  • Cai W, Geng C, Jiang L, Sun J, Chen B, Zhou Y, Yang B, Lu H. 2020. Encapsulation of gemcitabine in RGD-modified nanoliposomes improves breast cancer inhibitory activity. Pharm Dev Technol. 25(5):640–648. doi: 10.1080/10837450.2020.1727920.
  • Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, Khorasani S, Mozafari M. 2018. Impact of particle size and polydispersity index on the clinical applications of lipidic nano-carrier systems. Pharmaceutics. 10(2):57. doi: 10.3390/pharmaceutics10020057.
  • Deng Z, Wang X, Wang F, Qin Z, Cui Y, Sun Y, Sun L. 2016. Pharmacokinetics and tissue distribution study of 16-dehydropregnenolone liposome in female mice after intravenous administration. Drug Deliv. 23(8):2787–2795. doi: 10.3109/10717544.2015.1088596.
  • Guo H, Sun J, Li D, Hu Y, Yu X, Hua H, Jing X, Chen F, Jia Z, Xu J. 2019. Shikonin attenuates acetaminophen-induced acute liver injury via inhibition of oxidative stress and inflammation. Biomed Pharmacother. 112:108704–108712. doi: 10.1016/j.biopha.2019.108704.
  • Guo C, He J, Song X, Tan L, Wang M, Jiang P, Li Y, Cao Z, Peng C. 2019. Pharmacological properties and derivatives of shikonin-A review in recent years. Pharmacol Res. 149:104463. doi: 10.1016/j.phrs.2019.104463.
  • Han B, Yang Y, Chen J, Tang H, Sun Y, Zhang Z, Wang Z, Li Y, Li Y, Luan X, et al. 2020. Preparation, characterization, and pharmacokinetic study of a novel long-acting targeted paclitaxel liposome with anti-tumor activity. Int J Nanomedicine. 15:553–571. doi: 10.2147/IJN.S228715.
  • Hao Z, Qian J, Yang J. 2015. Shikonin induces apoptosis and inhibits migration of ovarian carcinoma cells by inhibiting the phosphorylation of Src and FAK. Oncol Lett. 9(2):629–633. doi: 10.3892/ol.2014.2771.
  • Hartwig F, Köll-Weber M, Süss R. 2021. Preclinical In vitro studies with 3D spheroids to evaluate Cu(DDC)2 containing ciposomes for the treatment of teuroblastoma. Pharmaceutics. 13(6):894. doi: 10.3390/pharmaceutics13060894.
  • Huang S, Yu L, Shen P. 2010. Simultaneous quantitative analysis of shikonin and deoxyshikonin in rat plasma by rapid LC-ESI-MS-MS. Chroma. 72(1-2):63–69. doi: 10.1365/s10337-010-1599-5.
  • Huang Z, Lv F, Wang J, Cao S, Liu Z, Liu Y, Lu W. 2019. RGD-modified PEGylated paclitaxel nanocrystals with enhanced stability and tumor-targeting capability. Int J Pharm. 556:217–225. doi: 10.1016/j.ijpharm.2018.12.023.
  • Janos S, Lajos B, Sandor S, Mihaly B, Morse DS, Milan B, Stahl GL, Rolf B, Alving CR. 2000. Liposome-induced pulmonary hypertension: properties and mechanism of a complement-mediated pseudoallergic reaction. Am J Physiol. 279(3):1319–1328.
  • Jiang L, Li L, He X, Yi Q, He B, Cao J, Pan W, Gu Z. 2015. Overcoming drug resistant lung cancer by paclitaxel loaded dual-functional liposomes with mitochondria targeting and pH-response. Biomaterials. 52:126–139. doi: 10.1016/j.biomaterials.2015.02.004.
  • Khabazian E, Vakhshiteh F, Norouzi P, Fatahi Y, Dinarvand R, Atyabi F. 2022. Cationic liposome decorated with cyclic RGD peptide for targeted delivery of anti-STAT3 siRNA to melanoma cancer cells. J Drug Target. 30(5):522–533. doi: 10.1080/1061186X.2021.1973481.
  • Kibria G, Hatakeyama H, Ohga N, Hida K, Harashima H. 2011. Dual-ligand modification of PEGylated liposomes shows better cell selectivity and efficient gene delivery. J Control Release. 153(2):141–148. doi: 10.1016/j.jconrel.2011.03.012.
  • Li M, Chen X, Hu S, Wang R, Peng X, Bai X. 2018. Determination of blood concentrations of main active compounds in Zi-Cao-Cheng-Qi decoction and their total plasma protein binding rates based on hollow fiber liquid phase microextraction coupled with high performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci. 1072:355–361. doi: 10.1016/j.jchromb.2017.11.046.
  • Liu H, Zhang R, Zhang D, Zhang C, Zhang Z, Fu X, Luo Y, Chen S, Wu A, Zeng W, et al. 2022. Cyclic RGD-decorated liposomal gossypol AT-101 targeting for enhanced anti-tumor effect. Int J Nanomedicine. 17:227–244. doi: 10.2147/IJN.S341824.
  • Liu P, Chen G, Zhang J. 2022. A Review of Liposomes as a Drug Delivery System: current Status of Approved Products, Regulatory Environments, and Future Perspectives. Molecules. 27(4):1372. doi: 10.3390/molecules27041372.
  • Luo L, Zheng P, Nie H, Chen Y, Tong D, Chen J, Cheng Y. 2016. Pharmacokinetics and tissue distribution of docetaxel liposome mediated by a novel galactosylated cholesterol derivatives synthesized by lipase-catalyzed esterification in non-aqueous phase. Drug Deliv. 23(4):1282–1290. doi: 10.3109/10717544.2014.980525.
  • Maeda H, Matsumura Y. 2011. EPR effect based drug design and clinical outlook for enhanced cancer chemotherapy. Adv Drug Deliv Rev. 63(3):129–130. doi: 10.1016/j.addr.2010.05.001.
  • Men W, Zhu P, Dong S, Liu W, Zhou K, Bai Y, Liu X, Gong S, Zhang S. 2020. Layer-by-layer pH-sensitive nanoparticles for drug delivery and controlled release with improved therapeutic efficacy in vivo. Drug Deliv. 27(1):180–190. doi: 10.1080/10717544.2019.1709922.
  • Perche F, Torchilin VP. 2012. Cancer cell spheroids as a model to evaluate chemotherapy protocols. Cancer Biol Ther. 13(12):1205–1213. doi: 10.4161/cbt.21353.
  • Rivas Mercado E, Neri Castro E, Bénard Valle M, Rucavado-Romero A, Olvera Rodríguez A, Zamudio Zuñiga F, Alagón Cano A, Garza Ocañas L. 2020. Disintegrins extracted from totonacan rattlesnake (Crotalus totonacus) venom and their anti-adhesive and anti-migration effects on MDA-MB-231 and HMEC-1 cells. Toxicol in Vitro. 65:104809. doi: 10.1016/j.tiv.2020.104809.
  • Ren Y, Yuan B, Hou S, Sui Y, Yang T, Lv M, Zhou Y, Yu H, Li S, Peng H, et al. 2021. Delivery of RGD-modified liposome as a targeted colorectal carcinoma therapy and its autophagy mechanism. J Drug Target. 29(8):863–874. doi: 10.1080/1061186X.2021.1882469.
  • Shan D, Li J, Cai P, Prasad P, Liu F, Rauth A, Wu X. 2015. RGD-conjugated solid lipid nanoparticles inhibit adhesion and invasion of αvβ3 integrin-overexpressing breast cancer cells. Drug Deliv Transl Res. 5(1):15–26. doi: 10.1007/s13346-014-0210-2.
  • Shao YY, Yin Y, Lian BP, Leng JF, Xia YZ, Kong LY. 2020. Synthesis and biological evaluation of novel shikonin-benzo[b]furan derivatives as tubulin polymerization inhibitors targeting the colchicine binding site. Eur J Med Chem. 190:112105. doi: 10.1016/j.ejmech.2020.112105.
  • Sheikh A, Alhakamy NA, Md S, Kesharwani P. 2021. Recent progress of RGD modified liposomes as multistage rocket against cancer. Front Pharmacol. 12:803304. doi: 10.3389/fphar.2021.803304.
  • Song Z, Lin Y, Zhang X, Feng C, Lu Y, Gao Y, Dong C. 2017. Cyclic RGD peptide-modified liposomal drug delivery system for targeted oral apatinib administration: enhanced cellular uptake and improved therapeutic effects. Int J Nanomedicine. 12:1941–1958. doi: 10.2147/IJN.S125573.
  • Su Y, Huang N, Chen D, Zhang L, Dong X, Sun Y, Zhu X, Zhang F, Gao J, Wang Y, et al. 2017. Successful in vivo hyperthermal therapy toward breast cancer by Chinese medicine shikonin-loaded thermosensitive micelle. Int J Nanomedicine. 12:4019–4035. doi: 10.2147/IJN.S132639.
  • Sun J, Jiang L, Lin Y, Gerhard EM, Jiang X, Li L, Yang J, Gu Z. 2017. Enhanced anticancer efficacy of paclitaxel through multistage tumor-targeting liposomes modified with RGD and KLA peptides. Int J Nanomedicine. 12:1517–1537. doi: 10.2147/IJN.S122859.
  • Tchoryk A, Taresco V, Argent RH, Ashford M, Gellert PR, Stolnik S, Grabowska A, Garnett MC. 2019. Penetration and uptake of nanoparticles in 3D tumor spheroids. Bioconjug Chem. 30(5):1371–1384. doi: 10.1021/acs.bioconjchem.9b00136.
  • Toro-Cordova A, Flores-Cruz M, Santoyo-Salazar J, Carrillo-Nava E, Jurado R, Figueroa-Rodriguez PA, Lopez-Sanchez P, Medina LA, Garcia-Lopez P. 2018. Liposomes loaded with cisplatin and magnetic nanoparticles: physicochemical characterization, pharmacokinetics, and in-vitro efficacy. Molecules. 23(9):2272. doi: 10.3390/molecules23092272.
  • US. 2001. Guidance for industry on bioanalytical method validation. Department of Health and Human Services (DHHS), Food and Drug Administration (FDA), Center for Drug Evaluation and Research (CDER) and Center for Veterinary Medicine (CVM). Available from: http://www/fda.gov/cder/guidance/index.htm. [last accessed 18 Apr 2015].
  • Wang F, Yao X, Zhang Y, Tang J. 2019. Synthesis, biological function and evaluation of shikonin in cancer therapy. Fitoterapia. 134:329–339. doi: 10.1016/j.fitote.2019.03.005.
  • Wei T, Liu J, Ma H, Cheng Q, Huang Y, Zhao J, Huo S, Xue X, Liang Z, Liang X. 2013. Functionalized nanoscale micelles improve drug delivery for cancer therapy in vitro and in vivo. Nano Lett. 13(6):2528–2534. doi: 10.1021/nl400586t.
  • Wen X, Li J, Cai D, Yue L, Wang Q, Zhou L, Fan L, Sun J, Wu Y. 2018. Anticancer efficacy of targeted shikonin liposomes modified with RGD in breast cancer cells. Molecules. 23(2):268. doi: 10.3390/molecules23020268.
  • Xiao K, Li Y, Luo J, Lee JS, Xiao W, Gonik AM, Agarwal RG, Lam KS, Joyce. 2011. The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials. 32(13):3435–3446., doi: 10.1016/j.biomaterials.2011.01.021.
  • Yingchoncharoen P, Kalinowski DS, Richardson DR. 2016. Lipid-based drug delivery systems in cancer therapy: what is available and what is yet to come. Pharmacol Rev. 68(3):701–787. doi: 10.1124/pr.115.012070.
  • Zhang F, Pan T, Wu X, Gao X, Li Z, Ren X. 2020. Non-cytotoxic doses of shikonin inhibit lipopolysaccharide-induced TNF-α expression via activation of the AMP-activated protein kinase signaling pathway. Exp Ther Med. 20(5):45. doi: 10.3892/etm.2020.9173.
  • Zhao F, Li L, Guan L, Yang H, Wu C, Liu Y. 2014. Roles for GP IIb/IIIa and αvβ3 integrins in MDA-MB-231 cell invasion and shear flow-induced cancer cell mechanotransduction. Cancer Lett. 344(1):62–73. doi: 10.1016/j.canlet.2013.10.019.
  • Zhong G, Sha L, Liu Z, Wei X. 2018. Tumor-penetrating peptide-functionalized redox-responsive hyperbranched poly(amido amine) delivering sirna for lung cancer therapy. ACS Biomater Sci Eng. 4(3):988–996. doi: 10.1021/acsbiomaterials.7b00971.
  • Zhou J, Guo B, Zhu W, Sui X, Han C. 2020. Novel biomimetic nanostructured lipid carriers for cancer therapy: preparation, characterization, and in vitro/in vivo evaluation. Pharmaceutical Development and Technology. 26(7):1–11.
  • Zhou T, Tang X, Zhang W, Feng J, Wu W. 2019. Preparation and in vitro and in vivo evaluations of 10-hydroxycamptothecin liposomes modified with stearyl glycyrrhetinate. Drug Deliv. 26(1):673–679. doi: 10.1080/10717544.2019.1636422.
  • Zuo H. 2019. iRGD: a promising peptide for cancer imaging and a potential therapeutic agent for various cancers. J Oncol. 2019:9367845. doi: 10.1155/2019/9367845.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.