86
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Paeoniflorin loaded liposomes modified with glycyrrhetinic acid for liver-targeting: preparation, characterization, and pharmacokinetic study

, , , , &
Pages 176-186 | Received 28 Nov 2023, Accepted 13 Feb 2024, Published online: 29 Feb 2024

References

  • Böttger R, Pauli G, Chao P-H, Al Fayez N, Hohenwarter L, Li S-D. 2020. Lipid-based nanoparticle technologies for liver targeting. Adv Drug Deliv Rev. 154–155:79–101. doi: 10.1016/j.addr.2020.06.017.
  • Cao Y, Xiong J, Guan X, Yin S, Chen J, Yuan S, Liu H, Lin S, Zhou Y, Qiu J, et al. 2023. Paeoniflorin suppresses kidney inflammation by regulating macrophage polarization via klf4-mediated mitophagy. Phytomedicine. 116:154901. doi: 10.1016/j.phymed.2023.154901.
  • Chen J, Lin Y, Wu M, Li C, Zhang Y, Chen D, Cheng Y. 2021. Drug-free liposomes containing mannosylated ligand for liver-targeting: synthetic optimization, liposomal preparation, and bioactivity evaluation. J Biomed Nanotechnol. 17(12):2455–2465. doi: 10.1166/jbn.2021.3204.
  • Chen L, Wei S, Liu H, Li J, Jing M, Tong Y, Li R, Wen J, Zhan H, Zhao Y. 2021. Paeoniflorin protects against anit-induced cholestatic liver injury in rats via the activation of sirt1-fxr signaling pathway. Evid Complement Alternat Med. 2021:1–12. doi: 10.1155/2021/8479868.
  • Chen L, Zhao X, Wei S, Ma X, Liu H, Li J, Jing M, Wang M, Zhao Y. 2021. Mechanism of paeoniflorin on anit-induced cholestatic liver injury using integrated metabolomics and network pharmacology. Front Pharmacol. 12:737630. doi: 10.3389/fphar.2021.737630.
  • Choi KY, Saravanakumar G, Park JH, Park K. 2012. Hyaluronic acid-based nanocarriers for intracellular targeting: interfacial interactions with proteins in cancer. Colloids Surf B Biointerfaces. 99:82–94. doi: 10.1016/j.colsurfb.2011.10.029.
  • Cui Y, Mo Y, Zhang Q, Tian W, Xue Y, Bai J, Du S. 2018. Microneedle-assisted percutaneous delivery of paeoniflorin-loaded ethosomes. Molecules. 23(12):3371. doi: 10.3390/molecules23123371.
  • Deepak P, Kumar P, Arya DK, Pandey P, Kumar S, Parida BP, Narayan G, Singh S, Rajinikanth PS. 2023. C(RGDFK) anchored surface manipulated liposome for tumor-targeted tyrosine kinase inhibitor (TKI) delivery to potentiate liver anticancer activity. Int J Pharm. 642:123160. doi: 10.1016/j.ijpharm.2023.123160.
  • Dymek M, Sikora E. 2022. Liposomes as biocompatible and smart delivery systems – the current state. Adv Colloid Interface Sci. 309:102757. doi: 10.1016/j.cis.2022.102757.
  • E Silva ATM, Maia ALC, de Oliveira Silva J, de Barros ALB, Soares DCF, de Magalhães MTQ, José Alves R, Ramaldes GA. 2018. Synthesis of cholesterol-based neoglycoconjugates and their use in the preparation of liposomes for active liver targeting. Carbohydr Res. 465:52–57. doi: 10.1016/j.carres.2018.06.008.
  • Gheybi F, Alavizadeh SH, Rezayat SM, Hatamipour M, Akhtari J, Faridi Majidi R, Badiee A, Jaafari MR. 2021. PH-sensitive pegylated liposomal silybin: synthesis, in vitro and in vivo anti-tumor evaluation. J Pharm Sci. 110(12):3919–3928. doi: 10.1016/j.xphs.2021.08.015.
  • Guimarães D, Cavaco-Paulo A, Nogueira E. 2021. Design of liposomes as drug delivery system for therapeutic applications. Int J Pharm. 601:120571. doi: 10.1016/j.ijpharm.2021.120571.
  • Haddad F, Mohammed N, Gopalan RC, Ayoub YA, Nasim MT, Assi KH. 2023. Development and optimisation of inhalable egcg nano-liposomes as a potential treatment for pulmonary arterial hypertension by implementation of the design of experiments approach. Pharmaceutics. 15(2):539. doi: 10.3390/pharmaceutics15020539.
  • Hong H, Lu X, Wu C, Chen J, Chen C, Zhang J, Huang C, Cui Z. 2022. A review for the pharmacological effects of paeoniflorin in the nervous system. Front Pharmacol. 13:898955. doi: 10.3389/fphar.2022.898955.
  • Huang S, Ren D, Wu X, Li M, Yu X, Nie X, Wang Y, Wang Y. 2020. Glycyrrhetinic acid and tat peptide modified dual-functional liposomes for treatment of hepatocellular cancer. Curr Top Med Chem. 20(27):2493–2505. doi: 10.2174/1568026620666200722110244.
  • Lei C, Chen Z, Fan L, Xue Z, Chen J, Wang X, Huang Z, Men Y, Yu M, Liu Y, et al. 2022. Integrating metabolomics and network analysis for exploring the mechanism underlying the antidepressant activity of paeoniflorin in rats with cums-induced depression. Front Pharmacol. 13:904190. doi: 10.3389/fphar.2022.904190.
  • Li L, Chen A, Liu B, Pan H, Yu Y, Liu Y. 2022a. Preparation and pharmacokinetics of glycyrrhetinic acid and cell transmembrane peptides modified with liposomes for liver targeted-delivery. Biomed. Mater. 17(4):045006. doi: 10.1088/1748-605X/ac6b73.
  • Li R, Zhang J, Liu Q, Tang Q, Jia Q, Xiong Y, He J, Li Y. 2023. CREKA-modified liposomes target activated hepatic stellate cells to alleviate liver fibrosis by inhibiting collagen synthesis and angiogenesis. Acta Biomater. 168:484–496. doi: 10.1016/j.actbio.2023.06.032.
  • Li X, Diao W, Xue H, Wu F, Wang W, Jiang B, Bai J, Lian B, Feng W, Sun T, et al. 2020. Improved efficacy of doxorubicin delivery by a novel dual-ligand-modified liposome in hepatocellular carcinoma. Cancer Lett. 489:163–173. doi: 10.1016/j.canlet.2020.06.017.
  • Li Y, Wu J, Lu Q, Liu X, Wen J, Qi X, Liu J, Lian B, Zhang B, Sun H, et al. 2022b. GA&HA-modified liposomes for co-delivery of aprepitant and curcumin to inhibit drug-resistance and metastasis of hepatocellular carcinoma. Int J Nanomedicine. 17:2559–2575. doi: 10.2147/IJN.S366180.
  • Li Y, Zhang R, Xu Z, Wang Z. 2022c. Advances in nanoliposomes for the diagnosis and treatment of liver cancer. Int J Nanomedicine. 17:909–925. doi: 10.2147/IJN.S349426.
  • Li Y-L, Zhu X-M, Liang H, Orvig C, Chen Z-F. 2021. Recent advances in asialoglycoprotein receptor and glycyrrhetinic acid receptor-mediated and/or ph-responsive hepatocellular carcinoma-targeted drug delivery. Curr Med Chem. 28(8):1508–1534. doi: 10.2174/0929867327666200505085756.
  • Liu A, Chai X, Zhu S, Chin P-T, He M, Xu Y-J, Liu Y. 2023. Effects of n-succinyl-chitosan coating on properties of astaxanthin-loaded peg-liposomes: environmental stability, antioxidant/antibacterial activities, and in vitro release. Int J Biol Macromol. 244:125311. doi: 10.1016/j.ijbiomac.2023.125311.
  • Liu L, Xing R, Xue J, Fan J, Zou J, Song X, Jia R, Zou Y, Li L, Zhou X, et al. 2023. Low molecular weight fucoidan modified nanoliposomes for the targeted delivery of the anti-inflammation natural product berberine. Int J Pharm. 642:123102. doi: 10.1016/j.ijpharm.2023.123102.
  • Liu P, Shen J, Cao J, Jiang W. 2024. P-coumaric acid-loaded nanoliposomes: optimization, characterization, antimicrobial properties and preservation effects on fresh pod pepper fruit. Food Chem. 435:137672. doi: 10.1016/j.foodchem.2023.137672.
  • Liu Y, He C-Y, Yang X-M, Chen W-C, Zhang M-J, Zhong X-D, Chen W-G, Zhong B-L, He S-Q, Sun H-T. 2023. Paeoniflorin coordinates macrophage polarization and mitigates liver inflammation and fibrogenesis by targeting the nf-κb/hif-1α pathway in CCL4-induced liver fibrosis. Am J Chin Med. 51(5):1249–1267. doi: 10.1142/S0192415X2350057X.
  • Ma L, Liu X, Zhang M, Zhou L, Jiang L, Gao L, Wang X, Huang Y, Zeng H, Wu Y. 2023. Paeoniflorin alleviates ischemia/reperfusion induced acute kidney injury by inhibiting slc7a11-mediated ferroptosis. Int Immunopharmacol. 116:109754. doi: 10.1016/j.intimp.2023.109754.
  • Ma Z, Chu L, Liu H, Wang W, Li J, Yao W, Yi J, Gao Y. 2017. Beneficial effects of paeoniflorin on non-alcoholic fatty liver disease induced by high-fat diet in rats. Sci Rep. 7(1):44819. doi: 10.1038/srep44819.
  • Ming J, Xu Q, Gao L, Deng Y, Yin J, Zhou Q, Tong Q, Zhang Y. 2021. Kinsenoside alleviates 17α-ethinylestradiol-induced cholestatic liver injury in rats by inhibiting inflammatory responses and regulating fxr-mediated bile acid homeostasis. Pharmaceuticals. 14(5):452. doi: 10.3390/ph14050452.
  • Nel J, Elkhoury K, Velot É, Bianchi A, Acherar S, Francius G, Tamayol A, Grandemange S, Arab-Tehrany E. 2023. Functionalized liposomes for targeted breast cancer drug delivery. Bioact Mater. 24:401–437. doi: 10.1016/j.bioactmat.2022.12.027.
  • Qi C, Wang D, Gong X, Zhou Q, Yue X, Li C, Li Z, Tian G, Zhang B, Wang Q, et al. 2021. Co-delivery of curcumin and capsaicin by dual-targeting liposomes for inhibition of ahsc-induced drug resistance and metastasis. ACS Appl Mater Interfaces. 13(14):16019–16035. doi: 10.1021/acsami.0c23137.
  • Qu B, Wang X-L, Zheng D-C, Mai C-T, Liu Z-Q, Zhou H, Xie Y. 2022. Novel treatment for refractory rheumatoid arthritis with total glucosides of paeony and nobiletin codelivered in a self-nanoemulsifying drug delivery system. Acta Pharmacol Sin. 43(8):2094–2108. doi: 10.1038/s41401-021-00801-6.
  • Shen C, Shen B, Zhu J, Wang J, Yuan H, Li X. 2021. Glycyrrhizic acid-based self-assembled micelles for improving oral bioavailability of paeoniflorin. Drug Dev Ind Pharm. 47(2):207–214. doi: 10.1080/03639045.2020.1862178.
  • Wang D, Yang F, Shang W, Zhao Z, Shen J, Cai H. 2021. Paeoniflorin-loaded ph-sensitive liposomes alleviate synovial inflammation by altering macrophage polarity via stat signaling. Int Immunopharmacol. 101(Pt A):108310. doi: 10.1016/j.intimp.2021.108310.
  • Wang J, Zhuo J, Tao Y, Xu S, Chen Z, Yang F, Ke Q, Xie H, Zheng S, Wang H, et al. 2020. Salinomycin-loaded small-molecule nanoprodrugs enhance anticancer activity in hepatocellular carcinoma. Int J Nanomedicine. 15:6839–6854. doi: 10.2147/IJN.S236928.
  • Wang R, Yuan T, Sun J, Yang M, Chen Y, Wang L, Wang Y, Chen W, Peng D. 2022. Paeoniflorin alleviates 17α-ethinylestradiol-induced cholestasis via the farnesoid x receptor-mediated bile acid homeostasis signaling pathway in rats. Front Pharmacol. 13:1064653. doi: 10.3389/fphar.2022.1064653.
  • Wang XZ, Xia L, Zhang XY, Chen Q, Li X, Mou Y, Wang T, Zhang YN. 2022. The multifaceted mechanisms of paeoniflorin in the treatment of tumors: state-of-the-art. Biomed Pharmacother. 149:112800. doi: 10.1016/j.biopha.2022.112800.
  • Wei S, Ma X, Niu M, Wang R, Yang T, Wang D, Wen J, Li H, Zhao Y. 2020. Mechanism of paeoniflorin in the treatment of bile duct ligation-induced cholestatic liver injury using integrated metabolomics and network pharmacology. Front Pharmacol. 11:586806. doi: 10.3389/fphar.2020.586806.
  • Wu C, Li B, Zhang Y, Chen T, Chen C, Jiang W, Wang Q, Chen T. 2020. Intranasal delivery of paeoniflorin nanocrystals for brain targeting. Asian J Pharm Sci. 15(3):326–335. doi: 10.1016/j.ajps.2019.11.002.
  • Wu Z, Wang T, Song Y, Lu Y, Chen T, Chen P, Hui A, Chen Y, Wang H, Zhang W, et al. 2019. Optimization on conditions of podophyllotoxin-loaded liposomes using response surface methodology and its activity on pc3 cells. J Liposome Res. 29(2):133–141. doi: 10.1080/08982104.2018.1502303.
  • Xue H, Qin L, Zhang L, Li X, Wu F, Wang W, Wang C, Diao W, Jiang B, Lian B, et al. 2021. Preparation of docetaxel‑loaded, glycyrrhetinic acid‑modified nanoparticles and their liver‑targeting and antitumor activity. Exp Ther Med. 22(4):1144. doi: 10.3892/etm.2021.10578.
  • Yang J, Xiang D, Xiang D, He W, Liu Y, Lan L, Li G, Jiang C, Ren X, Liu D, et al. 2019. Baicalin protects against 17α-ethinylestradiol-induced cholestasis via the sirtuin 1/hepatic nuclear receptor-1α/farnesoid x receptor pathway. Front Pharmacol. 10:1685. doi: 10.3389/fphar.2019.01685.
  • Yang W, Zhang Y, Wang J, Li H, Yang H. 2022. Glycyrrhetinic acid-cyclodextrin grafted pullulan nanoparticles loaded doxorubicin as a liver targeted delivery carrier. Int J Biol Macromol. 216:789–798. doi: 10.1016/j.ijbiomac.2022.07.182.
  • Yuan T, Lv S, Zhang W, Tang Y, Chang H, Hu Z, Fang L, Du J, Wu S, Yang X, et al. 2022. PF-plc micelles ameliorate cholestatic liver injury via regulating tlr4/myd88/nf-κb and pxr/car/ugt1a1 signaling pathways in ee-induced rats. Int J Pharm. 615:121480. doi: 10.1016/j.ijpharm.2022.121480.
  • Zhai L, Pei H, Shen H, Yang Y, Han C, Guan Q. 2023. Paeoniflorin suppresses neuronal ferroptosis to improve the cognitive behaviors in alzheimer’s disease mice. Phytother Res. 37(10):4791–4800. doi: 10.1002/ptr.7946.
  • Zhang K, Zhang Y, Li Z, Li N, Feng N. 2017. Essential oil-mediated glycerosomes increase transdermal paeoniflorin delivery: optimization, characterization, and evaluation in vitro and in vivo. Int J Nanomedicine. 12:3521–3532. doi: 10.2147/IJN.S135749.
  • Zhao X, Yang Y, Su X, Xie Y, Liang Y, Zhou T, Wu Y, Di L. 2023. Transferrin-modified triptolide liposome targeting enhances anti-hepatocellular carcinoma effects. Biomedicines. 11(10):2869. doi: 10.3390/biomedicines11102869.
  • Zhou H-Q, Liu W, Wang J, Huang Y-Q, Li P-Y, Zhu Y, Wang J-B, Ma X, Li R-S, Wei S-Z, et al. 2017. Paeoniflorin attenuates anit-induced cholestasis by inhibiting apoptosis in vivo via mitochondria-dependent pathway. Biomed Pharmacother. 89:696–704. doi: 10.1016/j.biopha.2017.02.084.
  • Zhou T, Tang X, Zhang W, Feng J, Wu W. 2019. Preparation and in vitro and in vivo evaluations of 10-hydroxycamptothecin liposomes modified with stearyl glycyrrhetinate. Drug Deliv. 26(1):673–679. doi: 10.1080/10717544.2019.1636422.
  • Zhou Y, Liu X, Gao Y, Tan R, Wu Z, Zhong Q, Zeng F. 2021. Paeoniflorin affects hepatocellular carcinoma progression by inhibiting wnt/β-catenin pathway through downregulation of 5-ht1d. Curr Pharm Biotechnol. 22(9):1246–1253. doi: 10.2174/1389201021666201009153808.
  • Zhu J, Wang Q, Li H, Zhang H, Zhu Y, Omari-Siaw E, Sun C, Wei Q, Deng W, Yu J, et al. 2018. Galangin-loaded, liver targeting liposomes: optimization and hepatoprotective efficacy. J Drug Delivery Sci Technol. 46:339–347. doi: 10.1016/j.jddst.2018.05.034.
  • Zhu Y, Liang J, Gao C, Wang A, Xia J, Hong C, Zhong Z, Zuo Z, Kim J, Ren H, et al. 2021. Multifunctional ginsenoside rg3-based liposomes for glioma targeting therapy. J Control Release. 330:641–657. doi: 10.1016/j.jconrel.2020.12.036.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.