90
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Nanoparticles as carriers of photosensitizers to improve photodynamic therapy in cancer

ORCID Icon, & ORCID Icon
Pages 221-235 | Received 26 Oct 2023, Accepted 20 Feb 2024, Published online: 05 Mar 2024

References

  • Abu-Yousif AO, Moor ACE, Zheng X, Savellano MD, Yu W, Selbo PK, Hasan T. 2012. Epidermal growth factor receptor-targeted photosensitizer selectively inhibits EGFR signaling and induces targeted phototoxicity in ovarian cancer cells. Cancer Lett. 321(2):120–127. doi: 10.1016/j.canlet.2012.01.014.
  • Ackerson CJ, Jadzinsky PD, Kornberg RD. 2005. Thiolate ligands for synthesis of water-soluble gold clusters. J Am Chem Soc. 127(18):6550–6551. doi: 10.1021/ja046114i.
  • Adeyemi OS, Otuechere CA, Adewuyi A, et al. 2020. Gold nanoparticles in delivery applications. Nanoengineered biomaterials for advanced drug delivery. New York: Elsevier; p. 329–345.
  • Agostinis P, Berg K, Cengel KA, Foster TH, Girotti AW, Gollnick SO, Hahn SM, Hamblin MR, Juzeniene A, Kessel D, et al. 2011. Photodynamic therapy of cancer: an update. CA Cancer J Clin. 61(4):250–281. doi: 10.3322/caac.20114.
  • Allen TM, Cullis PR. 2013. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 65(1):36–48. doi: 10.1016/j.addr.2012.09.037.
  • Alsaab HO, Alghamdi MS, Alotaibi AS, Alzhrani R, Alwuthaynani F, Althobaiti YS, Almalki AH, Sau S, Iyer AK. 2020. Progress in clinical trials of photodynamic therapy for solid tumors and the role of nanomedicine. Cancers (Basel). 12(10):2793. doi: 10.3390/cancers12102793.
  • Bharathiraja S, Moorthy MS, Manivasagan P, Seo H, Lee KD, Oh J. 2017. Chlorin e6 conjugated silica nanoparticles for targeted and effective photodynamic therapy. Photodiagnosis Photodyn Ther. 19:212–220. doi: 10.1016/j.pdpdt.2017.06.001.
  • Borys N, Dewhirst MW. 2021. Drug development of lyso-thermosensitive liposomal doxorubicin: combining hyperthermia and thermosensitive drug delivery. Adv Drug Deliv Rev. 178:113985. doi: 10.1016/j.addr.2021.113985.
  • Bretin L, Pinon A, Bouramtane S, Ouk C, Richard L, Perrin M-L, Chaunavel A, Carrion C, Bregier F, Sol V, et al. 2019. Photodynamic therapy activity of new porphyrin-xylan-coated silica nanoparticles in human colorectal cancer. Cancers (Basel). 11(10):1474. doi: 10.3390/cancers11101474.
  • Brown JM. 2007. Tumor hypoxia in cancer therapy. Methods Enzymol. 435:297–321. doi: 10.1016/S0076-6879(07)35015-5.
  • Cao H, Zhong S, Wang Q, Chen C, Tian J, Zhang W. 2020. Enhanced photodynamic therapy based on an amphiphilic branched copolymer with pendant vinyl groups for simultaneous GSH depletion and Ce6 release. J Mater Chem B. 8(3):478–483. doi: 10.1039/c9tb02120e.
  • Chang K, Liu Z, Fang X, Chen H, Men X, Yuan Y, Sun K, Zhang X, Yuan Z, Wu C, et al. 2017. Enhanced phototherapy by nanoparticle-enzyme via generation and photolysis of hydrogen peroxide. Nano Lett. 17(7):4323–4329. doi: 10.1021/acs.nanolett.7b01382.
  • Chaudhry M, Lyon P, Coussios C, Carlisle R. 2022. Thermosensitive liposomes: a promising step toward localised chemotherapy. Expert Opin Drug Deliv. 19(8):899–912. doi: 10.1080/17425247.2022.2099834.
  • Chen J, Fan T, Xie Z, Zeng Q, Xue P, Zheng T, Chen Y, Luo X, Zhang H. 2020. Advances in nanomaterials for photodynamic therapy applications: status and challenges. Biomaterials. 237:119827. doi: 10.1016/j.biomaterials.2020.119827.
  • Chen K, Chang C, Liu Z, Zhou Y, Xu Q, Li C, Huang Z, Xu H, Xu P, Lu B, et al. 2020. Hyaluronic acid targeted and pH-responsive nanocarriers based on hollow mesoporous silica nanoparticles for chemo-photodynamic combination therapy. Colloids Surf B Biointerfaces. 194:111166. doi: 10.1016/j.colsurfb.2020.111166.
  • Chen Q, Feng L, Liu J, Zhu W, Dong Z, Wu Y, Liu Z. 2016. Intelligent albumin–MnO2 nanoparticles as pH‐/H2O2‐responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy. Adv Mater. 28(33):7129–7136. doi: 10.1002/adma.201601902.
  • Chen Z, Han F, Du Y, Shi H, Zhou W. 2023. Hypoxic microenvironment in cancer: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther. 8(1):70. doi: 10.1038/s41392-023-01332-8.
  • Couleaud P, Morosini V, Frochot C, Richeter S, Raehm L, Durand J-O. 2010. Silica-based nanoparticles for photodynamic therapy applications. Nanoscale. 2(7):1083–1095. doi: 10.1039/c0nr00096e.
  • Das K, Roychoudhury A. 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2:53. doi: 10.3389/fenvs.2014.00053.
  • Dixit S, Miller K, Zhu Y, McKinnon E, Novak T, Kenney ME, Broome A-M. 2015. Dual receptor-targeted theranostic nanoparticles for localized delivery and activation of photodynamic therapy drug in glioblastomas. Mol Pharm. 12(9):3250–3260. doi: 10.1021/acs.molpharmaceut.5b00216.
  • Dorion S, Ouellet JC, Rivoal J. 2021. Glutathione metabolism in plants under stress: beyond reactive oxygen species detoxification. Metabolites. 11(9):641. doi: 10.3390/metabo11090641.
  • Fan H-Y, Yu X-H, Wang K, Yin Y-J, Tang Y-J, Tang Y-L, Liang X-H. 2019. Graphene quantum dots (GQDs)-based nanomaterials for improving photodynamic therapy in cancer treatment. Eur J Med Chem. 182:111620. doi: 10.1016/j.ejmech.2019.111620.
  • Fan W, Bu W, Shen B, He Q, Cui Z, Liu Y, Zheng X, Zhao K, Shi J. 2015. Intelligent MnO2 nanosheets anchored with upconversion nanoprobes for concurrent pH‐/H2O2‐responsive UCL imaging and oxygen‐elevated synergetic therapy. Adv Mater. 27(28):4155–4161. doi: 10.1002/adma.201405141.
  • Feng X, Chen Z, Liu Z, Fu X, Song H, Zhang Q. 2023. Self-delivery photodynamic-hypoxia alleviating nanomedicine synergizes with anti-PD-L1 for cancer immunotherapy. Int J Pharm. 639:122970. doi: 10.1016/j.ijpharm.2023.122970.
  • Fisher C, Obaid G, Niu C, Foltz W, Goldstein A, Hasan T, Lilge L. 2019. Liposomal lapatinib in combination with low-dose photodynamic therapy for the treatment of glioma. J Clin Med. 8(12):2214. doi: 10.3390/jcm8122214.
  • Frangioni JV. 2003. In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol. 7(5):626–634. doi: 10.1016/j.cbpa.2003.08.007.
  • Gunaydin G, Gedik ME, Ayan S. 2021. Photodynamic therapy for the treatment and diagnosis of cancer: a review of the current clinical status. Front Chem. 9:686303. doi: 10.3389/fchem.2021.686303.
  • Han J, Park W, Park S-J, Na K. 2016. Photosensitizer-conjugated hyaluronic acid-shielded polydopamine nanoparticles for targeted photomediated tumor therapy. ACS Appl Mater Interfaces. 8(12):7739–7747. doi: 10.1021/acsami.6b01664.
  • He C, Duan X, Guo N, Chan C, Poon C, Weichselbaum RR, Lin W. 2016. Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy. Nat Commun. 7(1):12499. doi: 10.1038/ncomms12499.
  • He S, Song J, Qu J, Cheng Z. 2018. Crucial breakthrough of second near-infrared biological window fluorophores: design and synthesis toward multimodal imaging and theranostics. Chem Soc Rev. 47(12):4258–4278. doi: 10.1039/c8cs00234g.
  • He Y, Cong C, He Y, Hao Z, Li C, Wang S, Zhao Q, He H, Zhu R, Li X, et al. 2019. Tumor hypoxia relief overcomes multidrug resistance and immune inhibition for self-enhanced photodynamic therapy. Chem Eng J. 375:122079. doi: 10.1016/j.cej.2019.122079.
  • Hilgenbrink AR, Low PS. 2005. Folate receptor-mediated drug targeting: from therapeutics to diagnostics. J Pharm Sci. 94(10):2135–2146. doi: 10.1002/jps.20457.
  • Hola K, Zhang Y, Wang Y, Giannelis EP, Zboril R, Rogach AL. 2014. Carbon dots—emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today. 9(5):590–603. doi: 10.1016/j.nantod.2014.09.004.
  • Hopper C. 2000. Photodynamic therapy: a clinical reality in the treatment of cancer. Lancet Oncol. 1(4):212–219. doi: 10.1016/s1470-2045(00)00166-2.
  • Huang P, Qian X, Chen Y, Yu L, Lin H, Wang L, Zhu Y, Shi J. 2017. Metalloporphyrin-encapsulated biodegradable nanosystems for highly efficient magnetic resonance imaging-guided sonodynamic cancer therapy. J Am Chem Soc. 139(3):1275–1284. doi: 10.1021/jacs.6b11846.
  • Ibbotson SH. 2010. An overview of topical photodynamic therapy in dermatology. Photodiagnosis Photodyn Ther. 7(1):16–23. doi: 10.1016/j.pdpdt.2009.12.001.
  • Iqbal N, Iqbal N. 2014. Human epidermal growth factor receptor 2 (HER2) in cancers: overexpression and therapeutic implications. Mol Biol Int. 2014:852748–852749. doi: 10.1155/2014/852748.
  • Jain PK, Huang X, El-Sayed IH, El-Sayed MA. 2008. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res. 41(12):1578–1586. doi: 10.1021/ar7002804.
  • Janas K, Boniewska-Bernacka E, Dyrda G, Słota R. 2021. Porphyrin and phthalocyanine photosensitizers designed for targeted photodynamic therapy of colorectal cancer. Bioorg Med Chem. 30:115926. doi: 10.1016/j.bmc.2020.115926.
  • Jia Q, Ge J, Liu W, Zheng X, Chen S, Wen Y, Zhang H, Wang P. 2018. A magnetofluorescent carbon dot assembly as an acidic H2O2‐driven oxygenerator to regulate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy. Adv Mater. 30(13):1706090. doi: 10.1002/adma.201706090.
  • Jia Q, Zhao Z, Liang K, Nan F, Li Y, Wang J, Ge J, Wang P. 2020. Recent advances and prospects of carbon dots in cancer nanotheranostics. Mater. Chem. Front. 4(2):449–471. doi: 10.1039/C9QM00667B.
  • Ju E, Dong K, Chen Z, Liu Z, Liu C, Huang Y, Wang Z, Pu F, Ren J, Qu X, et al. 2016. Copper (II)–graphitic carbon nitride triggered synergy: improved ROS generation and reduced glutathione levels for enhanced photodynamic therapy. Angew Chem Int Ed Engl. 55(38):11467–11471. doi: 10.1002/anie.201605509.
  • Karagianni A, Tsierkezos NG, Prato M, Terrones M, Kordatos KV. 2023. Application of carbon-based quantum dots in photodynamic therapy. Carbon. 203:273–310. doi: 10.1016/j.carbon.2022.11.026.
  • Karges J. 2022. Clinical development of metal complexes as photosensitizers for photodynamic therapy of cancer. Angew Chem Int Ed Engl. 61(5):e202112236. doi: 10.1002/anie.202112236.
  • Kataoka H, Nishie H, Hayashi N, Tanaka M, Nomoto A, Yano S, Joh T. 2017. New photodynamic therapy with next-generation photosensitizers. Ann Transl Med. 5(8):183–183. doi: 10.21037/atm.2017.03.59.
  • Konan YN, Gurny R, Allémann E. 2002. State of the art in the delivery of photosensitizers for photodynamic therapy. J Photochem Photobiol B. 66(2):89–106. doi: 10.1016/s1011-1344(01)00267-6.
  • Koohi Moftakhari Esfahani M, Alavi SE, Cabot PJ, Islam N, Izake EL. 2022. Application of mesoporous silica nanoparticles in cancer therapy and delivery of repurposed anthelmintics for cancer therapy. Pharmaceutics. 14(8):1579. doi: 10.3390/pharmaceutics14081579.
  • Kwiatkowski S, Knap B, Przystupski D, Saczko J, Kędzierska E, Knap-Czop K, Kotlińska J, Michel O, Kotowski K, Kulbacka J, et al. 2018. Photodynamic therapy–mechanisms, photosensitizers and combinations. Biomed Pharmacother. 106:1098–1107. doi: 10.1016/j.biopha.2018.07.049.
  • Lan G, Ni K, Lin W. 2019. Nanoscale metal–organic frameworks for phototherapy of cancer. Coord Chem Rev. 379:65–81. doi: 10.1016/j.ccr.2017.09.007.
  • Lan G, Ni K, Xu Z, Veroneau SS, Song Y, Lin W. 2018. Nanoscale metal–organic framework overcomes hypoxia for photodynamic therapy primed cancer immunotherapy. J Am Chem Soc. 140(17):5670–5673. doi: 10.1021/jacs.8b01072.
  • Lan M, Zhao S, Liu W, Lee C-S, Zhang W, Wang P. 2019. Photosensitizers for photodynamic therapy. Adv Healthc Mater. 8(13):e1900132. doi: 10.1002/adhm.201900132.
  • Li B, Zhao S, Huang L, Wang Q, Xiao J, Lan M. 2021. Recent advances and prospects of carbon dots in phototherapy. Chem Eng J. 408:127245. doi: 10.1016/j.cej.2020.127245.
  • Li S, Zhang Y, He X-W, Li W-Y, Zhang Y-K. 2020. Multifunctional mesoporous silica nanoplatform based on silicon nanoparticles for targeted two-photon-excited fluorescence imaging-guided chemo/photodynamic synergetic therapy in vitro. Talanta. 209:120552. doi: 10.1016/j.talanta.2019.120552.
  • Li S, Zhao L, Zheng R, Fan G, Liu L, Zhou X, Chen X, Qiu X, Yu X, Cheng H, et al. 2020. Tumor microenvironment adaptable nanoplatform for O2 self‐sufficient chemo/photodynamic combination therapy. Part Part Syst Charact. 37(3):1900496. doi: 10.1002/ppsc.201900496.
  • Lin J, Wang S, Huang P, Wang Z, Chen S, Niu G, Li W, He J, Cui D, Lu G, et al. 2013. Photosensitizer-loaded gold vesicles with strong plasmonic coupling effect for imaging-guided photothermal/photodynamic therapy. ACS Nano. 7(6):5320–5329. doi: 10.1021/nn4011686.
  • Lin T, Zhao X, Zhao S, Yu H, Cao W, Chen W, Wei H, Guo H. 2018. O2-generating MnO2 nanoparticles for enhanced photodynamic therapy of bladder cancer by ameliorating hypoxia. Theranostics. 8(4):990–1004. doi: 10.7150/thno.22465.
  • Liu Y, Pan Y, Cao W, Xia F, Liu B, Niu J, Alfranca G, Sun X, Ma L, de la Fuente JM, et al. 2019. A tumor microenvironment responsive biodegradable CaCO3/MnO2-based nanoplatform for the enhanced photodynamic therapy and improved PD-L1 immunotherapy. Theranostics. 9(23):6867–6884. doi: 10.7150/thno.37586.
  • Lu K, He C, Guo N, Chan C, Ni K, Weichselbaum RR, Lin W. 2016. Chlorin-based nanoscale metal–organic framework systemically rejects colorectal cancers via synergistic photodynamic therapy and checkpoint blockade immunotherapy. J Am Chem Soc. 138(38):12502–12510. doi: 10.1021/jacs.6b06663.
  • Lucky SS, Soo KC, Zhang Y. 2015. Nanoparticles in photodynamic therapy. Chem Rev. 115(4):1990–2042. doi: 10.1021/cr5004198.
  • Lutsenko SV, Feldman NB, Finakova GV, Posypanova GA, Severin SE, Skryabin KG, Kirpichnikov MP, Lukyanets EA, Vorozhtsov GN. 1999. Targeting phthalocyanines to tumor cells using epidermal growth factor conjugates. Tumour Biol. 20(4):218–224. doi: 10.1159/000030066.
  • Masuda H, Zhang D, Bartholomeusz C, Doihara H, Hortobagyi GN, Ueno NT. 2012. Role of epidermal growth factor receptor in breast cancer. Breast Cancer Res Treat. 136(2):331–345. doi: 10.1007/s10549-012-2289-9.
  • Meng X, Wang K, Lv L, Zhao Y, Sun C, Ma L, Zhang B. 2019. Photothermal/Photodynamic therapy with immune‐adjuvant liposomal complexes for effective gastric cancer therapy. Part & Part Syst Charact. 36(6):1900015. doi: 10.1002/ppsc.201900015.
  • Meyers JD, Cheng Y, Broome A-M, Agnes RS, Schluchter MD, Margevicius S, Wang X, Kenney ME, Burda C, Basilion JP, et al. 2015. Peptide‐targeted gold nanoparticles for photodynamic therapy of brain cancer. Part Part Syst Charact. 32(4):448–457. doi: 10.1002/ppsc.201400119.
  • Mfouo-Tynga IS, Dias LD, Inada NM, Kurachi C. 2021. Features of third generation photosensitizers used in anticancer photodynamic therapy. Photodiagnosis Photodyn Ther. 34:102091. doi: 10.1016/j.pdpdt.2020.102091.
  • Muz B, de la Puente P, Azab F, Azab AK. 2015. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl). 3:83–92. doi: 10.2147/HP.S93413.
  • Niculescu A-G, Grumezescu AM. 2021. Photodynamic therapy—an up-to-date review. Appl Sci. 11(8):3626. doi: 10.3390/app11083626.
  • Oberdanner CB, Plaetzer K, Kiesslich T, Krammer B. 2005. Photodynamic treatment with fractionated light decreases production of reactive oxygen species and cytotoxicity in vitro via regeneration of glutathione. Photochem Photobiol. 81(3):609–613. doi: 10.1111/j.1751-1097.2005.tb00233.x.
  • O'Connor AE, Gallagher WM, Byrne AT. 2009. Porphyrin and nonporphyrin photosensitizers in oncology: preclinical and clinical advances in photodynamic therapy. Photochem Photobiol. 85(5):1053–1074. doi: 10.1111/j.1751-1097.2009.00585.x.
  • Pham T-TD, Phan LMT, Cho S, Park J. 2022. Enhancement approaches for photothermal conversion of donor–acceptor conjugated polymer for photothermal therapy: a review. Sci Technol Adv Mater. 23(1):707–734. doi: 10.1080/14686996.2022.2134976.
  • Piao Y, Burns A, Kim J, Wiesner U, Hyeon T. 2008. Designed fabrication of silica‐based nanostructured particle systems for nanomedicine applications. Adv Funct Mater. 18(23):3745–3758. doi: 10.1002/adfm.200800731.
  • Prasad P, Gordijo CR, Abbasi AZ, Maeda A, Ip A, Rauth AM, DaCosta RS, Wu XY. 2014. Multifunctional albumin–MnO2 nanoparticles modulate solid tumor microenvironment by attenuating hypoxia, acidosis, vascular endothelial growth factor and enhance radiation response. ACS Nano. 8(4):3202–3212. doi: 10.1021/nn405773r.
  • Pucelik B, Sułek A, Dąbrowski JM. 2020. Bacteriochlorins and their metal complexes as NIR-absorbing photosensitizers: properties, mechanisms, and applications. Coord Chem Rev. 416:213340. doi: 10.1016/j.ccr.2020.213340.
  • Qi J, Fang Y, Kwok RTK, Zhang X, Hu X, Lam JWY, Ding D, Tang BZ. 2017. Highly stable organic small molecular nanoparticles as an advanced and biocompatible phototheranostic agent of tumor in living mice. ACS Nano. 11(7):7177–7188. doi: 10.1021/acsnano.7b03062.
  • Rana A, Bhatnagar S. 2021. Advancements in folate receptor targeting for anti-cancer therapy: a small molecule-drug conjugate approach. Bioorg Chem. 112:104946. doi: 10.1016/j.bioorg.2021.104946.
  • Robertson CA, Evans DH, Abrahamse H. 2009. Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. J Photochem Photobiol B. 96(1):1–8. doi: 10.1016/j.jphotobiol.2009.04.001.
  • Sang R, Deng F, Engel A, Goldys E, Deng W. 2022. Lipid-polymer nanocarrier platform enables X-ray induced photodynamic therapy against human colorectal cancer cells. Biomed Pharmacother. 155:113837. doi: 10.1016/j.biopha.2022.113837.
  • Saraf S, Jain A, Tiwari A, Verma A, Panda PK, Jain SK. 2020. Advances in liposomal drug delivery to cancer: an overview. J Drug Delivery Sci Technol. 56:101549. doi: 10.1016/j.jddst.2020.101549.
  • Shemesh CS, Hardy CW, Yu DS, Fernandez B, Zhang H. 2014. Indocyanine green loaded liposome nanocarriers for photodynamic therapy using human triple negative breast cancer cells. Photodiagnosis Photodyn Ther. 11(2):193–203. doi: 10.1016/j.pdpdt.2014.02.001.
  • Shen Z, Ma Q, Zhou X, Zhang G, Hao G, Sun Y, Cao J. 2021. Strategies to improve photodynamic therapy efficacy by relieving the tumor hypoxia environment. NPG Asia Mater. 13(1):39. doi: 10.1038/s41427-021-00303-1.
  • Song R, Hu D, Chung HY, Sheng Z, Yao S. 2018. Lipid-polymer bilaminar oxygen nanobubbles for enhanced photodynamic therapy of cancer. ACS Appl Mater Interfaces. 10(43):36805–36813. doi: 10.1021/acsami.8b15293.
  • Song X, Liang C, Gong H, Chen Q, Wang C, Liu Z. 2015. Photosensitizer‐conjugated albumin − polypyrrole nanoparticles for imaging‐guided in vivo photodynamic/photothermal therapy. Small. 11(32):3932–3941. doi: 10.1002/smll.201500550.
  • Sun J, Guo Y, Zhu L, Yang L, Shi W, Wang K, Zhang H. 2017. Photodynamic therapy of human hepatoma using semiconductor quantum dots as sole photosensitizer. Part Part Syst Charact. 34(10):1600413. doi: 10.1002/ppsc.201600413.
  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. 2021. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71(3):209–249. doi: 10.3322/caac.21660.
  • Ta T, Porter TM. 2013. Thermosensitive liposomes for localized delivery and triggered release of chemotherapy. J Control Release. 169(1-2):112–125. doi: 10.1016/j.jconrel.2013.03.036.
  • Tang Y, Chen H, Chang K, Liu Z, Wang Y, Qu S, Xu H, Wu C. 2017. Photo-cross-linkable polymer dots with stable sensitizer loading and amplified singlet oxygen generation for photodynamic therapy. ACS Appl Mater Interfaces. 9(4):3419–3431. doi: 10.1021/acsami.6b14325.
  • Toffoli G, Cernigoi C, Russo A, Gallo A, Bagnoli M, Boiocchi M. 1997. Overexpression of folate binding protein in ovarian cancers. Int J Cancer. 74(2):193–198. doi: 10.1002/(SICI)1097-0215(19970422)74:2<193::AID-IJC10>3.0.CO;2-F.
  • Tsuruo T, Naito M, Tomida A, Fujita N, Mashima T, Sakamoto H, Haga N. 2003. Molecular targeting therapy of cancer: drug resistance, apoptosis and survival signal. Cancer Sci. 94(1):15–21. doi: 10.1111/j.1349-7006.2003.tb01345.x.
  • Uprety B, Abrahamse H. 2022. Semiconductor quantum dots for photodynamic therapy: recent advances. Front Chem. 10:946574. doi: 10.3389/fchem.2022.946574.
  • Vankayala R, Lin C-C, Kalluru P, Chiang C-S, Hwang KC. 2014. Gold nanoshells-mediated bimodal photodynamic and photothermal cancer treatment using ultra-low doses of near infra-red light. Biomaterials. 35(21):5527–5538. doi: 10.1016/j.biomaterials.2014.03.065.
  • Wang G, Su Y, Chen X, Zhou Y, Huang P, Huang W, Yan D. 2023. H2O2-responsive polymer prodrug nanoparticles with glutathione scavenger for enhanced chemo-photodynamic synergistic cancer therapy. Bioact Mater. 25:189–200. doi: 10.1016/j.bioactmat.2023.01.026.
  • Wang J, You M, Zhu G, Shukoor MI, Chen Z, Zhao Z, Altman MB, Yuan Q, Zhu Z, Chen Y, et al. 2013. Photosensitizer–gold nanorod composite for targeted multimodal therapy. Small. 9(21):3678–3684. doi: 10.1002/smll.201202155.
  • Woźniak M, Nowak M, Lazebna A, Więcek K, Jabłońska I, Szpadel K, Grzeszczak A, Gubernator J, Ziółkowski P. 2021. The comparison of in vitro photosensitizing efficacy of curcumin-loaded liposomes following photodynamic therapy on melanoma MUG-Mel2, squamous cell carcinoma SCC-25, and normal keratinocyte HaCaT cells. Pharmaceuticals. 14(4):374. doi: 10.3390/ph14040374.
  • Wu F, Chen J, Li H, Li C, Wang H, Liu G, Luo X, Zhu X. 2020. Gd (III) DOTA‐functionalized phthalocyanine nanodots for magnetic resonance imaging and photothermal/photodynamic therapy. Adv Mate Int. 7(19):2000713. doi: 10.1002/admi.202000713.
  • Wu F, Chen J, Yue L, Li H, Wang H, Zhu X. 2020. A simple strategy to fabricate phthalocyanine-encapsulated nanodots for magnetic resonance imaging and antitumor phototherapy. ACS Appl Bio Mater. 3(6):3681–3689. doi: 10.1021/acsabm.0c00325.
  • Wu H, Zeng F, Zhang H, Xu J, Qiu J, Wu S. 2016. A nanosystem capable of releasing a photosensitizer bioprecursor under two‐photon irradiation for photodynamic therapy. Adv Sci (Weinheim). 3(2):1500254. doi: 10.1002/advs.201500254.
  • Wu J, Hu X, Liu R, Zhang J, Song A, Luan Y. 2019. pH-responsive and self-targeting assembly from hyaluronic acid-based conjugate toward all-in-one chemo-photodynamic therapy. J Colloid Interface Sci. 547:30–39. doi: 10.1016/j.jcis.2019.03.087.
  • Wu N, Tu Y, Fan G, Ding J, Luo J, Wang W, Zhang C, Yuan C, Zhang H, Chen P, et al. 2022. Enhanced photodynamic therapy/photothermo therapy for nasopharyngeal carcinoma via a tumour microenvironment-responsive self-oxygenated drug delivery system. Asian J Pharm Sci. 17(2):253–267. doi: 10.1016/j.ajps.2022.01.002.
  • Xu L, Cheng L, Wang C, Peng R, Liu Z. 2014. Conjugated polymers for photothermal therapy of cancer. Polym Chem. 5(5):1573–1580. doi: 10.1039/C3PY01196H.
  • Yadav P, Zhang C, Whittaker AK, Kailasam K, Shanavas A. 2019. Magnetic and photocatalytic curcumin bound carbon nitride nanohybrids for enhanced glioma cell death. ACS Biomater Sci Eng. 5(12):6590–6601. doi: 10.1021/acsbiomaterials.9b01224.
  • Yaghini E, Seifalian AM, MacRobert AJ. 2009. Quantum dots and their potential biomedical applications in photosensitization for photodynamic therapy.
  • Yang F, Xu M, Chen X, Luo Y. 2023. Spotlight on porphyrins: classifications, mechanisms and medical applications. Biomed Pharmacother. 164:114933. doi: 10.1016/j.biopha.2023.114933.
  • Yang G, Ji J, Liu Z. 2021. Multifunctional MnO2 nanoparticles for tumor microenvironment modulation and cancer therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 13(6):e1720. doi: 10.1002/wnan.1720.
  • Yang K, Wang C, Wei X, Ding S, Liu C, Tian F, Li F. 2019. Self-illuminating photodynamic therapy with enhanced therapeutic effect by optimization of the chemiluminescence resonance energy transfer step to the photosensitizer. Bioconjug Chem. 31(3):595–604. doi: 10.1021/acs.bioconjchem.9b00740.
  • Yang L, Wang J, Yang S, Lu Q, Li P, Li N. 2019. Rod-shape MSN@MoS2 nanoplatform for FL/MSOT/CT imaging-guided photothermal and photodynamic therapy. Theranostics. 9(14):3992–4005. doi: 10.7150/thno.32715.
  • Yu W, Zhen W, Zhang Q, Li Y, Luo H, He J, Liu Y. 2020. Porphyrin‐based metal-organic framework compounds as promising nanomedicines in photodynamic therapy. ChemMedChem. 15(19):1766–1775. doi: 10.1002/cmdc.202000353.
  • Zha Z, Yue X, Ren Q, Dai Z. 2013. Uniform polypyrrole nanoparticles with high photothermal conversion efficiency for photothermal ablation of cancer cells. Adv Mater. 25(5):777–782. doi: 10.1002/adma.201202211.
  • Zhang C, Hu X, Jin L, Lin L, Lin H, Yang Z, Huang W. 2023. Strategic design of conquering hypoxia in tumor for advanced photodynamic therapy. Adv Healthc Mater. 12(24):e2300530. doi: 10.1002/adhm.202300530.
  • Zhang C, Li C, Liu Y, Zhang J, Bao C, Liang S, Wang Q, Yang Y, Fu H, Wang K, et al. 2015. Gold nanoclusters‐based nanoprobes for simultaneous fluorescence imaging and targeted photodynamic therapy with superior penetration and retention behavior in tumors. Adv Funct Mater. 25(8):1314–1325. doi: 10.1002/adfm.201403095.
  • Zhang S, Guo W, Wei J, Li C, Liang X-J, Yin M. 2017. Terrylenediimide-based intrinsic theranostic nanomedicines with high photothermal conversion efficiency for photoacoustic imaging-guided cancer therapy. ACS Nano. 11(4):3797–3805. doi: 10.1021/acsnano.6b08720.
  • Zhu W, Dong Z, Fu T, Liu J, Chen Q, Li Y, Zhu R, Xu L, Liu Z. 2016. Modulation of hypoxia in solid tumor microenvironment with MnO2 nanoparticles to enhance photodynamic therapy. Adv Funct Mater. 26(30):5490–5498. doi: 10.1002/adfm.201600676.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.