70
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Engineering nanosystems for transdermal delivery of antihypertensive drugs

, , , &
Pages 265-279 | Received 17 Aug 2023, Accepted 26 Feb 2024, Published online: 06 Mar 2024

References

  • Natsis M, Antza C, Doundoulakis I, Stabouli S, Kotsis V. Hypertension in obesity: novel Insights. Curr Hypertension Rev. 2020;16(1):30–36.
  • Oliveros E, Patel H, Kyung S, Fugar S, Goldberg A, Madan N, Williams KA. Hypertension in older adults: assessment, management, and challenges. Clin Cardiol. 2020;43(2):99–107. doi:10.1002/clc.23303.
  • Flack JM, Adekola B. Blood pressure and the new ACC/AHA hypertension guidelines. Trends Cardiovasc Med. 2020;30(3):160–164. doi:10.1016/j.tcm.2019.05.003.
  • Carey RM, Moran AE, Whelton PK. Treatment of hypertension: a review. Jama. 2022;328(18):1849–1861. doi:10.1001/jama.2022.19590.
  • do Vale GT, Ceron CS, Gonzaga NA, Simplicio JA, Padovan JC. Three generations of β-blockers: history, class differences and clinical applicability. Curr Hypertens Rev. 2019;15(1):22–31. doi:10.2174/1573402114666180918102735.
  • Sica DA. Calcium channel blocker class heterogeneity: select aspects of pharmacokinetics and pharmacodynamics. J Clin Hypertens (Greenwich). 2005;7(4 Suppl 1):21–26. doi:10.1111/j.1524-6175.2006.04482.x.
  • Gomes C, Ferreira D, Carvalho JPF, Barreto CAV, Fernandes J, Gouveia M, Ribeiro F, Duque AS, Vieira SI. Current genetic engineering strategies for the production of antihypertensive ACEI peptides. Biotechnol Bioeng. 2020;117(8):2610–2628. doi:10.1002/bit.27373.
  • Pradhan A, Tiwari A, Sethi R. Azilsartan: current evidence and perspectives in management of hypertension. Int J Hypertens. 2019;2019:1824621–1824628. doi:10.1155/2019/1824621.
  • Blowey DL. Diuretics in the treatment of hypertension. Pediatr Nephrol. 2016;31(12):2223–2233. doi:10.1007/s00467-016-3334-4.
  • Azizi M, Rossignol P, Hulot JS. Emerging drug classes and their potential use in hypertension. Hypertension. 2019;74(5):1075–1083. doi:10.1161/HYPERTENSIONAHA.119.12676.
  • Yamamoto K, Rakugi H. Angiotensin receptor-neprilysin inhibitors: comprehensive review and implications in hypertension treatment. Hypertens Res. 2021;44(10):1239–1250. doi:10.1038/s41440-021-00706-1.
  • Guan Y, Li X, Li H, Ren J, Tang K, Zhang C, Gu Z, Li X, Lv Q, Bian X. Sacubitril/valsartan in heart failure with hypertension patients: real-world experiences on different ages, drug doses, and renal functions. High Blood Press Cardiovasc Prev. 2023;30(6):561–572. doi:10.1007/s40292-023-00606-0.
  • Zuo C, Li X, Fan L, Li J, Tian D, Chen C, Li X, Lv Q. Effectiveness and safety of sacubitril/valsartan for patients with hypertension and heart failure in the real-world setting: a retrospective study in China. J Clin Pharm Ther. 2022;47(10):1539–1547. doi:10.1111/jcpt.13699.
  • Sharma M, Sharma R, Jain DK. Nanotechnology based approaches for enhancing oral bioavailability of poorly water soluble antihypertensive drugs. Scientifica (Cairo). 2016;2016:8525679–8525611. doi:10.1155/2016/8525679.
  • Ita K, Ashong S. Percutaneous delivery of antihypertensive agents: advances and challenges. AAPS PharmSciTech. 2020;21(2):56. doi:10.1208/s12249-019-1583-9.
  • Kumar L, Utreja P. Transcending the cutaneous barrier through nanocarrier exploration for passive delivery of anti-hypertensive drugs: a critical review. Recent Pat Nanotechnol. 2020;14(3):193–209. doi:10.2174/1872210514666200519071734.
  • Ahad A, Al-Jenoobi FI, Al-Mohizea AM, Akhtar N, Raish M, Aqil M. Systemic delivery of β-blockers via transdermal route for hypertension. Saudi Pharm J. 2015;23(6):587–602. doi:10.1016/j.jsps.2013.12.019.
  • Ahad A, Al-Jenoobi FI, Al-Mohizea AM, Aqil M, Kohli K. Transdermal delivery of calcium channel blockers for hypertension. Expert Opin Drug Deliv. 2013;10(8):1137–1153. doi:10.1517/17425247.2013.783562.
  • Ahad A, Al-Mohizea AM, Al-Jenoobi FI, Aqil M. Transdermal delivery of angiotensin II receptor blockers (ARBs), angiotensin-converting enzyme inhibitors (ACEIs) and others for management of hypertension. Drug Deliv. 2016;23(2):579–590. doi:10.3109/10717544.2014.942444.
  • Sica DA, Grubbs R. Transdermal clonidine: therapeutic considerations. J Clin Hypertens (Greenwich). 2005;7(9):558–562. doi:10.1111/j.1524-6175.2005.04133.x.
  • Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol. 2007;2(12):751–760. doi:10.1038/nnano.2007.387.
  • Cheng Z, Li M, Dey R, Chen Y. Nanomaterials for cancer therapy: current progress and perspectives. J Hematol Oncol. 2021;14(1):85. doi:10.1186/s13045-021-01096-0.
  • Shabbir M, Nagra U, Zaman M, Mahmood A, Barkat K. Lipid vesicles and nanoparticles for non-invasive topical and transdermal drug delivery. Curr Pharm Des. 2020;26(18):2149–2166. doi:10.2174/1381612826666200114090659.
  • Desfrançois C, Auzély R, Texier I. Lipid nanoparticles and their hydrogel composites for drug delivery: a review. Pharmaceuticals (Basel). 2018;11(4):118–142. doi:10.3390/ph11040118.
  • Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26(11):1261–1268. doi:10.1038/nbt.1504.
  • Bos JD, Meinardi MM. The 500 Dalton rule for the skin penetration of chemical compounds and drugs. Exp Dermatol. 2000;9(3):165–169. doi:10.1034/j.1600-0625.2000.009003165.x.
  • Lev-Tov H, Maibach HI. Regional variations in percutaneous absorption. J Drugs Dermatol. 2012;11(10):e48–51.
  • Yosipovitch G, Xiong GL, Haus E, Sackett-Lundeen L, Ashkenazi I, Maibach HI. Time-dependent variations of the skin barrier function in humans: transepidermal water loss, stratum corneum hydration, skin surface pH, and skin temperature. J Invest Dermatol. 1998;110(1):20–23. doi:10.1046/j.1523-1747.1998.00069.x.
  • Schmidt GR, Schuna AA, Goodfriend TL. Transdermal clonidine compared with hydrochlorothiazide as monotherapy in elderly hypertensive males. J Clin Pharmacol. 1989;29(2):133–139. doi:10.1002/j.1552-4604.1989.tb03301.x.
  • Antoine JL, Contreras JL, Van Neste DJ. pH influence of surfactant-induced skin irritation. A non-invasive, multiparametric study with sodium laurylsulfate. Derm Beruf Umwelt. 1989;37(3):96–100.
  • Nangia A, Andersen PH, Berner B, Maibach HI. High dissociation constants (pKa) of basic permeants are associated with in vivo skin irritation in man. Contact Dermatitis. 1996;34(4):237–242. doi:10.1111/j.1600-0536.1996.tb02192.x.
  • Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use: an updated review. Pharmaceutics. 2017;9(2):12. doi:10.3390/pharmaceutics9020012.
  • Guan Y, Zuo T, Chang M, Zhang F, Wei T, Shao W, Lin G. Propranolol hydrochloride-loaded liposomal gel for transdermal delivery: characterization and in vivo evaluation. Int J Pharm. 2015;487(1-2):135–141. doi:10.1016/j.ijpharm.2015.04.023.
  • Hussain A, Singh S, Sharma D, Webster TJ, Shafaat K, Faruk A. Elastic liposomes as novel carriers: recent advances in drug delivery. Int J Nanomedicine. 2017;12:5087–5108. doi:10.2147/IJN.S138267.
  • Mishra D, Garg M, Dubey V, Jain S, Jain NK. Elastic liposomes mediated transdermal delivery of an anti-hypertensive agent: propranolol hydrochloride. J Pharm Sci. 2007;96(1):145–155. doi:10.1002/jps.20737.
  • Manvir A, Rana AC, Seth N, Bala R. Elastic liposome mediated transdermal delivery of an anti-hypertensive agent: nifedipine. J Drug Delivery Ther. 2012;2(5):145–155. doi:10.22270/jddt.v2i5.278.
  • Benson HA. Transfersomes for transdermal drug delivery. Expert Opin Drug Deliv. 2006;3(6):727–737. doi:10.1517/17425247.3.6.727.
  • Cevc G, Blume G. Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochim Biophys Acta. 1992;1104(1):226–232. doi:10.1016/0005-2736(92)90154-e.
  • Cevc G, Schätzlein A, Richardsen H. Ultradeformable lipid vesicles can penetrate the skin and other semi-permeable barriers unfragmented. Evidence from double label CLSM experiments and direct size measurements. Biochim Biophys Acta. 2002;1564(1):21–30. doi:10.1016/s0005-2736(02)00401-7.
  • van den Bergh BA, Bouwstra JA, Junginger HE, Wertz PW. Elasticity of vesicles affects hairless mouse skin structure and permeability. J Control Release. 1999;62(3):367–379. doi:10.1016/s0168-3659(99)00168-6.
  • Honeywell-Nguyen PL, Wouter Groenink HW, de Graaff AM, Bouwstra JA. The in vivo transport of elastic vesicles into human skin: effects of occlusion, volume and duration of application. J Control Release. 2003;90(2):243–255. doi:10.1016/s0168-3659(03)00202-5.
  • Ahad A, Aqil M, Kohli K, Sultana Y, Mujeeb M, Ali A. Formulation and optimization of nanotransfersomes using experimental design technique for accentuated transdermal delivery of valsartan. Nanomedicine. 2012;8(2):237–249. doi:10.1016/j.nano.2011.06.004.
  • Ahad A, Aqil M, Kohli K, Sultana Y, Mujeeb M. The ameliorated longevity and pharmacokinetics of valsartan released from a gel system of ultradeformable vesicles. Artif Cells Nanomed Biotechnol. 2016;44(6):1457–1463. doi:10.3109/21691401.2015.1041638.
  • Ahad A, Al-Saleh AA, Al-Mohizea AM, Al-Jenoobi FI, Raish M, Yassin AEB, Alam MA. Formulation and characterization of Phospholipon 90 G and tween 80 based transfersomes for transdermal delivery of eprosartan mesylate. Pharm Dev Technol. 2018;23(8):787–793. doi:10.1080/10837450.2017.1330345.
  • Ahad A, Al-Saleh AA, Al-Mohizea AM, Al-Jenoobi FI, Raish M, Yassin AEB, Alam MA. Formulation and characterization of novel soft nanovesicles for enhanced transdermal delivery of eprosartan mesylate. Saudi Pharm J. 2017;25(7):1040–1046. doi:10.1016/j.jsps.2017.01.006.
  • Ahad A, Al-Saleh AA, Al-Mohizea AM, Al-Jenoobi FI, Raish M, Yassin AEB, Alam MA. Pharmacodynamic study of eprosartan mesylate-loaded transfersomes Carbopol(®) gel under Dermaroller(®) on rats with methyl prednisolone acetate-induced hypertension. Biomed Pharmacother. 2017;89:177–184. doi:10.1016/j.biopha.2017.01.164.
  • Morsi NM, Aboelwafa AA, Dawoud MH. Improved bioavailability of timolol maleate via transdermal transfersomal gel: statistical optimization, characterization, and pharmacokinetic assessment. J Adv Res. 2016;7(5):691–701. doi:10.1016/j.jare.2016.07.003.
  • Morsi NM, Aboelwafa AA, Dawoud MHS. Enhancement of the bioavailability of an antihypertensive drug by transdermal protransfersomal system: formulation and in vivo study. J Liposome Res. 2018;28(2):137–148. doi:10.1080/08982104.2017.1295989.
  • El Zaafarany GM, Awad GAS, Holayel SM, Mortada ND. Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery. Int J Pharm. 2010;397(1-2):164–172. doi:10.1016/j.ijpharm.2010.06.034.
  • Birkodi S, Patil AS, Masareddy R, Rajpurohit M. Fabrication, optimization, and evaluation of transdermal patch: as an alternative and effective transdermal delivery system for nebivolol HCl. Pharm Nanotechnol 2023;12(1):79–89. doi:10.2174/2211738511666230601103658.
  • Lastra G, Syed S, Kurukulasuriya LR, Manrique C, Sowers JR. Type 2 diabetes mellitus and hypertension: an update. Endocrinol Metab Clin North Am. 2014;43(1):103–122. doi:10.1016/j.ecl.2013.09.005.
  • Ramkanth S, Anitha P, Gayathri R, Mohan S, Babu D. Formulation and design optimization of nano-transferosomes using pioglitazone and eprosartan mesylate for concomitant therapy against diabetes and hypertension. Eur J Pharm Sci. 2021;162:105811. doi:10.1016/j.ejps.2021.105811.
  • Touitou E, Dayan N, Bergelson L, Godin B, Eliaz M. Ethosomes – novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J Control Release. 2000;65(3):403–418. doi:10.1016/s0168-3659(99)00222-9.
  • Nainwal N, Jawla S, Singh R, Saharan VA. Transdermal applications of ethosomes - a detailed review. J Liposome Res. 2019;29(2):103–113. doi:10.1080/08982104.2018.1517160.
  • Ahad A, Aqil M, Kohli K, Sultana Y, Mujeeb M. Enhanced transdermal delivery of an anti-hypertensive agent via nanoethosomes: statistical optimization, characterization and pharmacokinetic assessment. Int J Pharm. 2013;443(1-2):26–38. doi:10.1016/j.ijpharm.2013.01.011.
  • Ahad A, Aqil M, Kohli K, Sultana Y, Mujeeb M. Nano vesicular lipid carriers of angiotensin II receptor blocker: anti-hypertensive and skin toxicity study in focus. Artif Cells Nanomed Biotechnol. 2016;44(3):1002–1007. doi:10.3109/21691401.2015.1008509.
  • Bhosale SS, Avachat AM. Design and development of ethosomal transdermal drug delivery system of valsartan with preclinical assessment in Wistar albino rats. J Liposome Res. 2013;23(2):119–125. doi:10.3109/08982104.2012.753457.
  • Nasr AM, Moftah F, Abourehab MAS, Gad S. Design, formulation, and characterization of valsartan nanoethosomes for improving their bioavailability. Pharmaceutics. 2022;14(11):2268. doi:10.3390/pharmaceutics14112268.
  • Ibrahim TM, Abdallah MH, El-Megrab NA, El-Nahas HM. Transdermal ethosomal gel nanocarriers; a promising strategy for enhancement of anti-hypertensive effect of carvedilol. J Liposome Res. 2019;29(3):215–228. doi:10.1080/08982104.2018.1529793.
  • Amarachinta PR, Sharma G, Samed N, Chettupalli AK, Alle M, Kim J-C. Central composite design for the development of carvedilol-loaded transdermal ethosomal hydrogel for extended and enhanced anti-hypertensive effect. J Nanobiotechnology. 2021;19(1):100. doi:10.1186/s12951-021-00833-4.
  • Salem HF, El-Menshawe SF, Khallaf RA, Rabea YK. A novel transdermal nanoethosomal gel of lercanidipine HCl for treatment of hypertension: optimization using Box-Benkhen design, in vitro and in vivo characterization. Drug Deliv Transl Res. 2020;10(1):227–240. doi:10.1007/s13346-019-00676-5.
  • Moideen Muthu Mohamed J, Khan BA, Rajendran V, El-Sherbiny M, Othman G, Bashir Ahmed Hussamuldin A, Hamed Al-Serwi R. Polymeric ethosomal gel loaded with nimodipine: optimisation, pharmacokinetic and histopathological analysis. Saudi Pharm J. 2022;30(11):1603–1611. doi:10.1016/j.jsps.2022.09.003.
  • Mishra A, Khunt D, Ghayal A, Patel C, Shah D. Formulation and optimization of ethosomes for transdermal delivery of felodipine. Res J Pharm Technol (RJPT). 2013;5:1509–1517.
  • Albash R, Abdelbary AA, Refai H, El-Nabarawi MA. Use of transethosomes for enhancing the transdermal delivery of olmesartan medoxomil: in vitro, ex vivo, and in vivo evaluation. Int J Nanomedicine. 2019;14:1953–1968. doi:10.2147/IJN.S196771.
  • Kumar L, Utreja P. Formulation and characterization of transethosomes for enhanced transdermal delivery of propranolol hydrochloride. MNS. 2020;12(1):38–47. doi:10.2174/1876402911666190603093550.
  • Babaie S, Bakhshayesh ARD, Ha JW, Hamishehkar H, Kim KH. Invasome: a novel nanocarrier for transdermal drug delivery. Nanomaterials (Basel). 2020;10(2):341–353. doi:10.3390/nano10020341.
  • Ahad A, Aqil M, Kohli K, Sultana Y, Mujeeb M, Ali A. Interactions between novel terpenes and main components of rat and human skin: mechanistic view for transdermal delivery of propranolol hydrochloride. Curr Drug Deliv. 2011;8(2):213–224. doi:10.2174/156720111794479907.
  • Ahad A, Aqil M, Kohli K, Sultana Y, Mujeeb M, Ali A. Role of novel terpenes in transcutaneous permeation of valsartan: effectiveness and mechanism of action. Drug Dev Ind Pharm. 2011;37(5):583–596. doi:10.3109/03639045.2010.532219.
  • Kamran M, Ahad A, Aqil M, Imam SS, Sultana Y, Ali A. Design, formulation and optimization of novel soft nano-carriers for transdermal olmesartan medoxomil delivery: in vitro characterization and in vivo pharmacokinetic assessment. Int J Pharm. 2016;505(1-2):147–158. doi:10.1016/j.ijpharm.2016.03.030.
  • Qadri GR, Ahad A, Aqil M, Imam SS, Ali A. Invasomes of isradipine for enhanced transdermal delivery against hypertension: formulation, characterization, and in vivo pharmacodynamic study. Artif Cells Nanomed Biotechnol. 2017;45(1):139–145. doi:10.3109/21691401.2016.1138486.
  • Ammar HO, Tadros MI, Salama NM, Ghoneim AM. Ethosome-derived invasomes as a potential transdermal delivery system for vardenafil hydrochloride: development, optimization and application of physiologically based pharmacokinetic modeling in adults and geriatrics. Int J Nanomedicine. 2020;15:5671–5685. doi:10.2147/IJN.S261764.
  • Marianecci C, Di Marzio L, Rinaldi F, Celia C, Paolino D, Alhaique F, Esposito S, Carafa M. 2014. Niosomes from 80s to present: the state of the art. Adv Colloid Interface Sci. 205:187–206. doi:10.1016/j.cis.2013.11.018.
  • Qumbar M, Ameeduzzafar, Imam SS, Ali J, Ahmad J, Ali A. Formulation and optimization of lacidipine loaded niosomal gel for transdermal delivery: in-vitro characterization and in-vivo activity. Biomed Pharmacother. 2017;93:255–266. doi:10.1016/j.biopha.2017.06.043.
  • Aburahma MH. Bile salts-containing vesicles: promising pharmaceutical carriers for oral delivery of poorly water-soluble drugs and peptide/protein-based therapeutics or vaccines. Drug Deliv. 2016;23(6):1847–1867. doi:10.3109/10717544.2014.976892.
  • Arzani G, Haeri A, Daeihamed M, Bakhtiari-Kaboutaraki H, Dadashzadeh S. Niosomal carriers enhance oral bioavailability of carvedilol: effects of bile salt-enriched vesicles and carrier surface charge. Int J Nanomed. 2015;10:4797–4813.
  • Albash R, El-Nabarawi MA, Refai H, Abdelbary AA. Tailoring of PEGylated bilosomes for promoting the transdermal delivery of olmesartan medoxomil: in-vitro characterization, ex-vivo permeation and in-vivo assessment. Int J Nanomedicine. 2019;14:6555–6574. doi:10.2147/IJN.S213613.
  • Vora B, Khopade AJ, Jain NK. Proniosome based transdermal delivery of levonorgestrel for effective contraception. J Control Release. 1998;54(2):149–165. doi:10.1016/s0168-3659(97)00100-4.
  • Ramkanth S, Chetty CM, Sudhakar Y, Thiruvengadarajan VS, Anitha P, Gopinath C. Development, characterization & invivo evaluation of proniosomal based transdermal delivery system of Atenolol. Future J Pharmaceut Sci. 2018;4(1):80–87. doi:10.1016/j.fjps.2017.10.003.
  • Soliman SM, Abdelmalak NS, El-Gazayerly ON, Abdelaziz N. Novel non-ionic surfactant proniosomes for transdermal delivery of lacidipine: optimization using 2(3) factorial design and in vivo evaluation in rabbits. Drug Deliv. 2016;23(5):1608–1622. doi:10.3109/10717544.2015.1132797.
  • Yasam VR, Jakki SL, Natarajan J, Venkatachalam S, Kuppusamy G, Sood S, Jain K. A novel vesicular transdermal delivery of nifedipine - preparation, characterization and in vitro/in-vivo evaluation. Drug Deliv. 2016;23(2):619–630. doi:10.3109/10717544.2014.931484.
  • Thi TTH, Suys EJA, Lee JS, Nguyen DH, Park KD, Truong NP. Lipid-based nanoparticles in the clinic and clinical trials: from cancer nanomedicine to COVID-19 vaccines. Vaccines (Basel). 2021;9(4):359. doi:10.3390/vaccines9040359.
  • Kumar G, Virmani T, Pathak K, Alhalmi A. A revolutionary blueprint for mitigation of hypertension via nanoemulsion. Biomed Res Int. 2022;2022:1–12.doi:10.1155/2022/4109874.
  • Varshosaz J, Andalib S, Tabbakhian M, Ebrahimzadeh N. Development of lecithin nanoemulsion based organogels for permeation enhancement of metoprolol through rat skin. J Nanomater. 2013;2013:1–10. doi:10.1155/2013/139437.
  • Rizwan M, Aqil M, Azeem A, Talegaonkar S, Sultana Y, Ali A. Enhanced transdermal delivery of carvedilol using nanoemulsion as a vehicle. J Exp Nanosci. 2010;5(5):390–411. doi:10.1080/17458080903583964.
  • Zaid Alkilani A, Hamed R, Al-Marabeh S, Kamal A, Abu-Huwaij R, Hamad I. Nanoemulsion-based film formulation for transdermal delivery of carvedilol. J Drug Delivery Sci Technol. 2018;46:122–128. doi:10.1016/j.jddst.2018.05.015.
  • Malgope A, Murthy PN, Ramani R, Dey S. Development of nanoemulsion as carrier for transdermal delivery of valsartan. Int J Pharm Chem Sci. 2013;2(4):1655–1665.
  • Aqil M, Kamran M, Ahad A, Imam SS. Development of clove oil based nanoemulsion of olmesartan for transdermal delivery: box–Behnken design optimization and pharmacokinetic evaluation. J Mol Liq. 2016;214:238–248. doi:10.1016/j.molliq.2015.12.077.
  • Yadav SA, Poddar SS. In-vitro and in-vivo evaluation of nanoemulsion gel for transdermal drug delivery of nimodipine. Asian J Pharm Clin Res. 2015;8:119–124.
  • Mariyate J, Bera A. A critical review on selection of microemulsions or nanoemulsions for enhanced oil recovery. J Mol Liq. 2022;353:118791. doi:10.1016/j.molliq.2022.118791.
  • Rao J, McClements DJ. Food-grade microemulsions and nanoemulsions: role of oil phase composition on formation and stability. Food Hydrocolloids. 2012;29(2):326–334. doi:10.1016/j.foodhyd.2012.04.008.
  • Gannu R, Palem CR, Yamsani VV, Yamsani SK, Yamsani MR. Enhanced bioavailability of lacidipine via microemulsion based transdermal gels: formulation optimization, ex vivo and in vivo characterization. Int J Pharm. 2010;388(1-2):231–241. doi:10.1016/j.ijpharm.2009.12.050.
  • Souza de Araujo GR, Mendonça da Cruz Macieira G, Xavier de Oliveira D, Santos Matos S, Nery Dos Santos Q, Otubo L, Antunes de Souza Araújo A, Cavalcante Duarte M, Moreira Lira AA, de Souza Nunes R, et al. Microemulsions formed by PPG-5-CETETH-20 at low concentrations for transdermal delivery of nifedipine: structural and in vitro study. Colloids Surf B Biointerfaces. 2022;214:112474. doi:10.1016/j.colsurfb.2022.112474.
  • Wu P-C, Lin Y-H, Chang J-S, Huang Y-B, Tsai Y-H. The effect of component of microemulsion for transdermal delivery of nicardipine hydrochloride. Drug Dev Ind Pharm. 2010;36(12):1398–1403. doi:10.3109/03639045.2010.485277.
  • Oparil S, Weber M. Angiotensin receptor blocker and dihydropyridine calcium channel blocker combinations: an emerging strategy in hypertension therapy. Postgrad Med. 2009;121(2):25–39. doi:10.3810/pgm.2009.03.1974.
  • Sood J, Sapra B, Tiwary AK. Microemulsion transdermal formulation for simultaneous delivery of valsartan and nifedipine: formulation by design. AAPS PharmSciTech. 2017;18(6):1901–1916. doi:10.1208/s12249-016-0658-0.
  • Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur J Pharm Biopharm. 2000;50(1):161–177.
  • Müller RH, Radtke M, Wissing SA. Nanostructured lipid matrices for improved microencapsulation of drugs. Int J Pharm. 2002;242(1-2):121–128. doi:10.1016/s0378-5173(02)00180-1.
  • Silva AC, Santos D, Ferreira DC, Souto EB. Minoxidil-loaded nanostructured lipid carriers (NLC): characterization and rheological behaviour of topical formulations. Pharmazie. 2009;64(3):177–182.
  • Kapoor H, Aqil M, Imam SS, Sultana Y, Ali A. Formulation of amlodipine nano lipid carrier: formulation design, physicochemical and transdermal absorption investigation. J Drug Delivery Sci Technol. 2019;49:209–218. doi:10.1016/j.jddst.2018.11.004.
  • Bhaskar K, Krishna Mohan C, Lingam M, Jagan Mohan S, Venkateswarlu V, Madhusudan Rao Y, Bhaskar K, Anbu J, Ravichandran V. Development of SLN and NLC enriched hydrogels for transdermal delivery of nitrendipine: in vitro and in vivo characteristics. Drug Dev Ind Pharm. 2009;35(1):98–113. doi:10.1080/03639040802192822.
  • Vyas SP, Murthy RSR, Narang RK. Nanocolloidal carriers: site specific and controlled drug delivery. CBS Publishers & Distributors Pvt Ltd, India; 2011.
  • Gebicki JM, Hicks M. Ufasomes are stable particles surrounded by unsaturated fatty acid membranes. Nature. 1973;243(5404):232–234. doi:10.1038/243232a0.
  • Hargreaves WR, Deamer DW. Liposomes from ionic, single-chain amphiphiles. Biochemistry. 1978;17(18):3759–3768. doi:10.1021/bi00611a014.
  • Kumar L, Verma S, Kumar S, Prasad DN, Jain AK. Fatty acid vesicles acting as expanding horizon for transdermal delivery. Artif Cells Nanomed Biotechnol. 2017;45(2):251–260. doi:10.3109/21691401.2016.1146729.
  • Verma S, Bhardwaj A, Vij M, Bajpai P, Goutam N, Kumar L. Oleic acid vesicles: a new approach for topical delivery of antifungal agent. Artif Cells Nanomed Biotechnol. 2014;42(2):95–101. doi:10.3109/21691401.2013.794351.
  • Kumar L, Utreja P. Oleic acid vesicles for transdermal delivery of propranolol hydrochloride: development and characterization. Curr Drug Therapy. 2019;14:1–13.
  • Kumar Gaur P, Mishra S, Purohit S. Nanovesicles of nitrendipine with lipid complex for transdermal delivery: pharmacokinetic and pharmacodynamic studies. Artif Cells Nanomed Biotechnol. 2016;44(7):1684–1693. doi:10.3109/21691401.2015.1080170.
  • Schwengber A, Prado HJ, Zilli DA, Bonelli PR, Cukierman AL. Carbon nanotubes buckypapers for potential transdermal drug delivery. Mater Sci Eng C Mater Biol Appl. 2015;57:7–13. doi:10.1016/j.msec.2015.07.030.
  • Zhang K, Zhuang Y, Li J, Liu X, He S. Poly(acrylic acid)-modified MoS(2) nanoparticle-based transdermal delivery of atenolol. Int J Nanomedicine. 2020;15:5517–5526. doi:10.2147/IJN.S257906.
  • Chen J, Cai B, Gu W, Xiao H, Li J. The prepartion method and application of percutaneous-absorption-promoting propranolol composite phospholipid transfersomes. Chinese Patent. CN102846546B, 2014.
  • Cai Y, Zhou X, Mo D, He R, Li J, Zhang W. The preparation method and application of propranolol hydrochloride submicron emulsion gel. Chinese Patent. CN105434337B, 2019.
  • Chen X, Yu J, Luo B, Li L, Cai B, Shao J, Wang B. A kind of self-assembled propranolol nanoparticulate drug and prepartion method thereof. Chinese Patent. CN116139274A, 2023.
  • Pope E, Lara-Corrales I, Sibbald C, Liy-Wong C, Kanigsberg N, Drolet B, Ma J. Noninferiority and safety of nadolol vs propranolol in infants with infantile hemangioma: a randomized clinical trial. JAMA Pediatr. 2022;176(1):34–41. doi:10.1001/jamapediatrics.2021.4565.
  • Zeng L, Tao C, Liu Z, Zhang J, Zhang M, Zhang J, Fang S, Ma X, Song H, Zhou X, et al. Preparation and evaluation of cubic nanoparticles for improved transdermal delivery of propranolol hydrochloride. AAPS PharmSciTech. 2020;21(7):266. doi:10.1208/s12249-020-01809-7.
  • Léauté-Labrèze C, Hoeger P, Mazereeuw-Hautier J, Guibaud L, Baselga E, Posiunas G, Phillips RJ, Caceres H, Lopez Gutierrez JC, Ballona R, et al. A randomized, controlled trial of oral propranolol in infantile hemangioma. N Engl J Med. 2015;372(8):735–746. doi:10.1056/NEJMoa1404710.
  • Jiang C, Ma R, Jiang X, Fang R, Ye J. A transfersomes hydrogel patch for cutaneous delivery of propranolol hydrochloride: formulation, in vitro, ex vivo and in vivo studies. J Liposome Res. 2023;33(3):258–267. doi:10.1080/08982104.2022.2162539.
  • Ferrario CM, VonCannon JL, Zhang J, Figueroa JP, Wright KN, Groban L, Saha A, Meredith JW, Ahmad S. Immunoneutralization of human angiotensin-(1-12) with a monoclonal antibody in a humanized model of hypertension. Peptides. 2022;149:170714. doi:10.1016/j.peptides.2021.170714.
  • Bairwa M, Pilania M, Gupta V, Yadav K. Hypertension vaccine may be a boon to millions in developing world. Hum Vaccin Immunother. 2014;10(3):708–713. doi:10.4161/hv.27520.
  • Desai AS, Webb DJ, Taubel J, Casey S, Cheng Y, Robbie GJ, Foster D, Huang SA, Rhyee S, Sweetser MT, et al. 2023. Zilebesiran, an RNA interference therapeutic agent for hypertension. N Engl J Med. 2023;389(3):228–238. doi:10.1056/NEJMoa2208391.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.