169
Views
3
CrossRef citations to date
0
Altmetric
Notes

Biodegradation of ceftriaxone in soil using dioxygenase-producing genetically engineered Pseudomonas putida

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 400-411 | Published online: 12 Apr 2022

References

  • Al-Gheethi, A. A., and N. Ismail. 2014. Biodegradation of pharmaceutical wastes in treated sewage effluents by Bacillus subtilis 1556WTNC. Environmental Processes 1 (4):459–81. doi: 10.1007/s40710-014-0034-6.
  • Al-Gheethi, A., E. Noman, R. M. S. Radin Mohamed, N. Ismail, A. H. Bin Abdullah, and A. H. Mohd Kassim. 2019. Optimizing of pharmaceutical active compounds biodegradability in secondary effluents by β-lactamase from Bacillus subtilis using central composite design. Journal of Hazardous Materials 365:883–94. doi: 10.1016/j.jhazmat.2018.11.068.
  • Anan, A., K. M. Ghanem, A. M. Embaby, A. Hussein, and M. Y. El‐Naggar. 2018. Statistically optimized ceftriaxone sodium biotransformation through Achromobacter xylosoxidans strain Cef6: An unusual insight for bioremediation. Journal of Basic Microbiology 58 (2):120–30. doi: 10.1002/jobm.201700497.
  • Arbabi, M., S. Nasseri, and A. Chimezie. 2009. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) in petroleum contaminated soils. Iranian Journal of Chemistry and Chemical Engineering (IJCCE) 28:53–9. doi: 10.30492/IJCCE.2009.6846.
  • Avşar, C., H. Koyuncu, and E. S. Aras. 2017. Isolation and molecular characterization of Bacillus spp. isolated from soil for production of industrial enzymes. Biological and Chemical Research 3:72–86.
  • Bhatt, P., S. Gangola, G. Bhandari, W. Zhang, D. Maithani, S. Mishra, and S. Chen. 2021. New insights into the degradation of synthetic pollutants in contaminated environments. Chemosphere 268:128827. doi: 10.1016/j.chemosphere.2020.128827.
  • Bozorginia, S., J. Jaafari, K. Taghavi, S. D. Ashrafi, E. Roohbakhsh, and D. Naghipour. 2021. Biosorption of ceftriaxone antibiotic by Pseudomonas putida from aqueous solutions. International Journal of Environmental Analytical Chemistry 101:1–15. doi: 10.1080/03067319.2021.1887858.
  • Câmara, J. M., M. Sousa, and E. B. Neto. 2019. Kinetics of the biodegradation of monoaromatics by Pseudomonas aeruginosa. Brazilian Journal of Chemical Engineering 36 (1):65–72. doi: 10.1590/0104-6632.20190361s20170549.
  • Chambers, L., Y. Yang, H. Littier, P. Ray, T. Zhang, A. Pruden, M. Strickland, and K. Knowlton. 2015. Metagenomic analysis of antibiotic resistance genes in dairy cow feces following therapeutic administration of third generation cephalosporin. PLoS One 10 (8):e0133764 doi: 10.1371/journal.pone.0133764.
  • Cycoń, M., A. Mrozik, and Z. Piotrowska-Seget. 2019 . Antibiotics in the soil environment-degradation and their impact on microbial activity and diversity. Frontiers in Microbiology 10:338 doi: 10.3389/fmicb.2019.00338.
  • Das, N., J. Madhavan, A. Selvi, and D. Das. 2019. An overview of cephalosporin antibiotics as emerging contaminants: A serious environmental concern. 3 Biotech 9 (6):231 doi: 10.1007/s13205-019-1766-9.
  • Dos Santos, D. F. K., P. Istvan, E. F. Noronha, B. F. Quirino, and R. H. Krüger. 2015. New dioxygenase from metagenomic library from Brazilian soil: Insights into antibiotic resistance and bioremediation. Biotechnology Letters 37 (9):1809–17. doi: 10.1007/s10529-015-1861-x.
  • Gatica, J., K. Yang, E. Pagaling, E. Jurkevitch, T. Yan, and E. Cytryn. 2015. Resistance of undisturbed soil microbiomes to ceftriaxone indicates extended spectrum β-lactamase activity. Frontiers in Microbiology 6:1233 doi: 10.3389/fmicb.2015.01233.
  • Kivisaar, M. 2020. Narrative of a versatile and adept species Pseudomonas putida. Journal of Medical Microbiology 69 (3):324–38. doi: 10.1099/jmm.0.001137.
  • Kong, X.-X., J.-L. Jiang, B. Qiao, H. Liu, J.-S. Cheng, and Y.-J. Yuan. 2019. The biodegradation of cefuroxime, cefotaxime and cefpirome by the synthetic consortium with probiotic Bacillus clausii and investigation of their potential biodegradation pathways. The Science of the Total Environment 651 (Pt 1):271–80. doi: 10.1016/j.scitotenv.2018.09.187.
  • Kučić Grgić, D., V. Ocelić Bulatović, M. Cvetnić, Ž. Dujmić Vučinić, M. Vuković Domanovac, M. Markić, and T. Bolanča. 2020. Biodegradation kinetics of diuron by Pseudomonas aeruginosa FN and optimization of biodegradation using response surface methodology. Water and Environment Journal 34 (S1):61–73. doi: 10.1111/wej.12505.
  • Kumar, A., A. Kumar, R. Singh, R. Singh, S. Pandey, A. Rai, V. K. Singh, and B. Rahul. 2020. Genetically engineered bacteria for the degradation of dye and other organic compounds. Abatement of Environmental Pollutants Elsevier. 2020:331–350. doi: 10.1016/B978-0-12-818095-2.00016-3.
  • Leja, K., K. Szudera-Kończal, K. Myszka, and K. Czaczyk. 2019. Antibacterial effect of natural oils—an opportunity to solve the problem of antibiotic resistance on the example of pseudomonas spp. Postępy Mikrobiologii - Advancements of Microbiology 58 (2):177–90. doi: 10.21307/PM-2019.58.2.177.
  • Liu, L.,. M. Bilal, X. Duan, and H. M. Iqbal. 2019 . Mitigation of environmental pollution by genetically engineered bacteria - Current challenges and future perspectives. The Science of the Total Environment 667:444–54. doi: 10.1016/j.scitotenv.2019.02.390.
  • Mardani, G., A. H. Mahvi, M. Hashemzadeh-Chaleshtori, S. Naseri, M. H. Dehghani, and P. Ghasemi-Dehkordi. 2017. Application of genetically engineered dioxygenase producing Pseudomonas putida on decomposition of oil from spiked soil. Jundishapur Journal of Natural Pharmaceutical Products 12 (3):64313. doi: 10.5812/jjnpp.64313.
  • Mardani, G., A. Mahvi, M. Hashemzadeh-Chaleshtori, S. Nasseri, M. Dehghani, and P. Ghasemi-Dehkordi. 2016. Degradation of phenanthrene and pyrene using genetically engineered dioxygenase producing Pseudomonas putida in soil. Genetika 48 (3):837–58. doi: 10.2298/GENSR1603837M.
  • Nasseri, S., R. Kalantary, N. Nourieh, K. Naddafi, A. Mahvi, and N. Baradaran. 2010. Influence of bioaugmentation in biodegradation of PAHs-contaminated soil in bio-slurry phase reactor. Journal of Environmental Health Science & Engineering 7:199–208.
  • Nnenna, F.-P., P. Lekiah, and O. Obemeata. 2011. Degradation of antibiotics by bacteria and fungi from the aquatic environment. Journal of Toxicology and Environmental Health Sciences 3:275–85. doi: 10.5897/JTEHS.9000015.
  • Nordam, T., S. Lofthus, and O. G. Brakstad. 2020. Modelling biodegradation of crude oil components at low temperatures. Chemosphere 254:126836. doi: 10.1016/j.chemosphere.2020.126836.
  • Oviaño, M., M. R. Rodicio, J. J. Heinisch, R. Rodicio, G. Bou, and J. Fernández. 2019. Analysis of the degradation of broad-spectrum cephalosporins by OXA-48-producing enterobacteriaceae using MALDI-TOF MS. Microorganisms 7 (12):614. doi: 10.3390/microorganisms7120614.
  • Pagaling, E., J. Gatica, K. Yang, E. Cytryn, and T. Yan. 2016. Phylogenetic diversity of ceftriaxone resistance and the presence of extended-spectrum β-lactamase genes in the culturable soil resistome. Journal of Global Antimicrobial Resistance 6:128–35. doi: 10.1016/j.jgar.2016.05.002.
  • Pieper, D. H., and W. Reineke. 2000. Engineering bacteria for bioremediation. Current Opinion in Biotechnology 11 (3):262–70. doi: 10.1016/S0958-1669(00)00094-X.
  • Poblete‐Castro, I., J. M. Borrero‐De Acuña, P. I. Nikel, M. Kohlstedt, and C. Wittmann. 2017. Host organism: Pseudomonas putida. Industrial Biotechnology: Microorganisms 1:299–326. doi: 10.1002/9783527807796.ch8.
  • Puddoo, H., R. Nithyanandam, and T. Nguyenhuynh. 2017. Degradation of the antibiotic ceftriaxone by fenton oxidation process and compound analysis. Journal of Physical Science 28 (3):95–114. doi: 10.21315/jps2017.28.3.7.
  • Ribeiro, A. R., B. Sures, and T. C. Schmidt. 2018. Cephalosporin antibiotics in the aquatic environment: A critical review of occurrence, fate, ecotoxicity and removal technologies. Environmental Pollution (Barking, Essex : 1987) 241:1153–66. doi: 10.1016/j.envpol.2018.06.040.
  • Rüegg, I., T. Hafner, M. Bucheli‐Witschel, and T. Egli. 2007. Dynamics of benzene and toluene degradation in Pseudomonas putida F1 in the presence of the alternative substrate succinate. Engineering in Life Sciences 7 (4):331–42. doi: 10.1002/elsc.200720202.
  • Selvi, A., D. Das, and N. Das. 2015. Potentiality of yeast Candida sp. SMN04 for degradation of cefdinir, a cephalosporin antibiotic: Kinetics, enzyme analysis and biodegradation pathway. Environmental Technology 36 (24):3112–24. doi: 10.1080/09593330.2015.1054318.
  • Selvi, A., J. A. Salam, and N. Das. 2014. Biodegradation of cefdinir by a novel yeast strain, Ustilago sp. SMN03 isolated from pharmaceutical wastewater. World Journal of Microbiology & Biotechnology 30 (11):2839–50. doi: 10.1007/s11274-014-1710-4.
  • Tewabe, A., T. Marew, and G. Birhanu. 2021 . The contribution of nano-based strategies in overcoming ceftriaxone resistance: a literature review . Pharmacology Research & Perspectives 9 (4):e00849 doi: 10.1002/prp2.849.
  • Wagner, R. D., S. J. Johnson, C. E. Cerniglia, and B. D. Erickson. 2011 . Bovine intestinal bacteria inactivate and degrade ceftiofur and ceftriaxone with multiple beta-lactamases. Antimicrobial Agents and Chemotherapy 55 (11):4990–8. doi: 10.1128/AAC.00008-11.
  • Wanyonyi, W. C., J. M. Onyari, P. M. Shiundu, and F. J. Mulaa. 2019. Effective biotransformation of reactive black 5 dye using crude protease from Bacillus cereus strain KM201428. Energy Procedia. 157:815–24. doi: 10.1016/j.egypro.2018.11.247.
  • Yang, C.-W., C. Liu, and B.-V. Chang. 2020. Biodegradation of amoxicillin, tetracyclines and sulfonamides in wastewater sludge. Water 12 (8):2147. doi: 10.3390/w12082147.
  • Zawadzke, L. E., T. J. Smith, and O. Herzberg. 1995 . An engineered Staphylococcus aureus PC1 beta-lactamase that hydrolyses third-generation cephalosporins . Protein Engineering 8 (12):1275–85. doi: 10.1093/protein/8.12.1275.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.