91
Views
1
CrossRef citations to date
0
Altmetric
Notes

Elucidation of molecular diversity and functional characterization of phenanthrene degrading consortium NS-PAH-2015-PNP-5

ORCID Icon, , & ORCID Icon
Pages 422-433 | Published online: 20 Apr 2022

References

  • Caporaso, J. G., J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman, E. K. Costello, N. Fierer, A. G. Peña, J. K. Goodrich, J. I. Gordon, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7 (5):335–6.
  • Daly, A., J. Baetens, and B. De Baets. 2018. Ecological diversity: Measuring the unmeasurable. Mathematics 6 (7):119. doi: 10.3390/math6070119.
  • DeSantis, T. Z., P. Hugenholtz, N. Larsen, M. Rojas, E. L. Brodie, K. Keller, T. Huber, D. Dalevi, P. Hu, and G. L. Andersen. 2006. Greengenes, a chimera-checked 16S RRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology 72 (7):5069–72.
  • Deveryshetty, J., and P. S. Phale. 2009. Biodegradation of phenanthrene by pseudomonas Sp. strain PPD: Purification and characterization of 1-hydroxy-2-naphthoic acid dioxygenase. Microbiology (Reading, England) 155 (Pt 9):3083–91. doi: 10.1099/mic.0.030460-0.
  • Eom, A.-H., D. C. Hartnett, and G. W. T. Wilson. 2000. Host plant species effects on arbuscular mycorrhizal fungal communities in tallgrass prairie. Oecologia 122 (3):435–44.
  • Gong, B., P. Wu, B. Ruan, Y. Zhang, X. Lai, L. Yu, Y. Li, and Z. Dang. 2018. Differential regulation of phenanthrene biodegradation process by kaolinite and quartz and the underlying mechanism. Journal of Hazardous Materials 349 (May):51–9. doi: 10.1016/j.jhazmat.2018.01.046.
  • Gu, Y.-G., Q. Lin, T.-T. Lu, C.-L. Ke, R.-X. Sun, and F.-Y. Du. 2013. Levels, composition profiles and sources of polycyclic aromatic hydrocarbons in surface sediments from Nan'ao Island, a representative mariculture base in South China. Marine Pollution Bulletin 75 (1–2):310–6. doi: 10.1016/j.marpolbul.2013.07.039.
  • Hadibarata, T., and S. Tachibana. 2010. Characterization of phenanthrene degradation by strain polyporus Sp. S133. Journal of Environmental Sciences 22 (1):142–9. doi: 10.1016/S1001-0742(09)60085-1.
  • Haritash, A. K., and C. P. Kaushik. 2009. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): A review. Journal of Hazardous Materials 169 (1–3):1–15.
  • Hillebrand, H., and U. Sommer. 2000. Diversity of benthic microalgae in response to colonization time and eutrophication. Aquatic Botany 67 (3):221–36. doi: 10.1016/S0304-3770(00)00088-7.
  • Jiang, Y., H. Huang, M. Wu, X. Yu, Y. Chen, P. Liu, and X. Li. 2015. Pseudomonas sp. LZ-Q continuously degrades phenanthrene under hypersaline and hyperalkaline condition in a membrane bioreactor system. Biophysics Reports 1 (3):156–67. doi: 10.1007/s41048-016-0018-3.
  • Karnovsky, M. J. 1965. A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. Journal of Cell Biology 27:1.
  • Khalifa, A. Y. Z., and M. F. Aldayel. 2018. Metabolic diversity of the diesel-oil-degrading bacterium, achromobacter pulmonis HDK3, obtained from eastern region of Saudi Arabia. Asian Journal of Microbiology, Biotechnology & Environmental Sciences 20 (3):778–85.
  • Li, Q. 2021. Mining secondary metabolism of achromobacter and analysis of key genes of petroleum degradation. IOP Conference Series: Earth and Environmental Science 692 (4):042032. doi: 10.1088/1755-1315/692/4/042032.
  • Liu, X., X. Hu, Y. Cao, W. Pang, J. Huang, P. Guo, and L. Huang. 2019. Biodegradation of phenanthrene and heavy metal removal by acid-tolerant burkholderia fungorum FM-2. Frontiers in Microbiology 10 (March 14):408. doi: 10.3389/fmicb.2019.00408.
  • Lladó Fernández, S., T. Větrovský, and P. Baldrian. 2019. The concept of operational taxonomic units revisited: Genomes of bacteria that are regarded as closely related are often highly dissimilar. Folia Microbiologica 64 (1):19–23. doi: 10.1007/s12223-018-0627-y.
  • Luan, T. G., K. S. H. Yu, Y. Zhong, H. W. Zhou, C. Y. Lan, and N. F. Y. Tam. 2006. Study of metabolites from the degradation of polycyclic aromatic hydrocarbons (PAHs) by bacterial consortium enriched from mangrove sediments. Chemosphere 65 (11):2289–96.
  • Ma, M. 2005. Species richness vs evenness: Independent relationship and different responses to edaphic factors. Oikos 111 (1):192–8. doi: 10.1111/j.0030-1299.2005.13049.x.
  • Miller, R. A., S. M. Beno, D. J. Kent, L. M. Carroll, N. H. Martin, K. J. Boor, and J. Kovac. 2016. Bacillus wiedmannii Sp. Nov., a psychrotolerant and cytotoxic Bacillus cereus group species isolated from dairy foods and dairy environments. International Journal of Systematic and Evolutionary Microbiology 66 (11):4744–53. doi: 10.1099/ijsem.0.001421.
  • Mnif, S., A. Chebbi, N. Mhiri, S. Sayadi, and M. Chamkha. 2017. Biodegradation of phenanthrene by a bacterial consortium enriched from sercina oilfield. Process Safety and Environmental Protection 107 (April):44–53. doi: 10.1016/j.psep.2017.01.023.
  • Muangchinda, C., A. Rungsihiranrut, P. Prombutara, S. Soonglerdsongpha, and O. Pinyakong. 2018. 16S Metagenomic analysis reveals adaptability of a mixed-PAH-degrading consortium isolated from crude oil-contaminated seawater to changing environmental conditions. Journal of Hazardous Materials 357 (September):119–27. doi: 10.1016/j.jhazmat.2018.05.062.
  • Nazaret, S., B. Cournoyer, P. Normand, and P. Simonet. 1991. Phylogenetic relationships among frankia genomic species determined by use of amplified 16S RDNA sequences. Journal of Bacteriology 173 (13):4072–8.
  • Ncube, S., P. Kunene, N. T. Tavengwa, H. Tutu, H. Richards, E. Cukrowska, and L. Chimuka. 2017. Synthesis and characterization of a molecularly imprinted polymer for the isolation of the 16 US-EPA priority polycyclic aromatic hydrocarbons (PAHs) in solution. Journal of Environmental Management 199 (September):192–200. doi: 10.1016/j.jenvman.2017.05.041.
  • Phale, P. S., A. Sharma, and K. Gautam. 2019. Microbial degradation of xenobiotics like aromatic pollutants from the terrestrial environments. In Pharmaceuticals and personal care products: Waste management and treatment technology, ed. M. N. V. Prasad, M. Vithanage and A. Kapley, 259–78. Oxford, UK: Butterworth-Heinemann. https://linkinghub.elsevier.com/retrieve/pii/B9780128161890000111.
  • Pielou, E. C. 1966. The measurement of diversity in different types of biological collections. Journal of Theoretical Biology 13 (December):131–44. doi: 10.1016/0022-5193(66)90013-0.
  • Pielou, E. C. 1977. Mathematical ecology. New York: John Wiley & Sons.
  • Prakash, O., and R. Lal. 2006. Description of sphingobium fuliginis sp. Nov., a phenanthrene-degrading bacterium from a fly ash dumping site, and reclassification of sphingomonas cloacae as sphingobium cloacae comb. nov. International Journal of Systematic and Evolutionary Microbiology 56 (Pt 9):2147–52.
  • Reddy, G. S., B. Mahendran, and R. S. Reddy. 2018. Screening and optimization of achromobacter xylosoxidans GSMSR13B producing bacteria. Asian Journal of Chemistry 30 (7):1424–30. doi: 10.14233/ajchem.2018.21087.
  • Seo, J.-S., Y.-S. Keum, and Q. Li. 2009. Bacterial degradation of aromatic compounds. International Journal of Environmental Research and Public Health 6 (1):278–309.
  • Shannon, C. E. 1948. A mathematical theory of communication. Bell System Technical Journal 27 (3):379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x.
  • Shinde, V. L., R. M. Meena, and B. D. Shenoy. 2018. Phylogenetic characterization of culturable bacteria and fungi associated with tarballs from Betul Beach, Goa, India. Marine Pollution Bulletin 128 (March):593–600. doi: 10.1016/j.marpolbul.2018.01.064.
  • Sukhdhane, K. S., P. K. Pandey, M. N. O. Ajima, T. Jayakumar, A. Vennila, and S. M. Raut. 2019. Isolation and characterization of phenanthrene-degrading bacteria from PAHs contaminated mangrove sediment of thane creek in Mumbai, India. Polycyclic Aromatic Compounds 39 (1):73–83. doi: 10.1080/10406638.2016.1261911.
  • Sun, S., Y. Wang, T. Zang, J. Wei, H. Wu, C. Wei, G. Qiu, and F. Li. 2019. A biosurfactant-producing Pseudomonas aeruginosa S5 isolated from coking wastewater and its application for bioremediation of polycyclic aromatic hydrocarbons. Bioresource Technology 281 (June):421–8. doi: 10.1016/j.biortech.2019.02.087.
  • Swenson, C. E., and R. T. Sadikot. 2015. Achromobacter respiratory infections. Annals of the American Thoracic Society 12 (2):252–8.
  • Tao, X.-Q., G.-N. Lu, Z. Dang, C. Yang, and X.-Y. Yi. 2007. A phenanthrene-degrading strain sphingomonas sp. GY2B isolated from contaminated soils. Process Biochemistry 42 (3):401–8. doi: 10.1016/j.procbio.2006.09.018.
  • Umar, Z. D., A. A. Nor Azwady, S. Z. Zulkifli, and M. Muskhazli. 2018. Effective phenanthrene and pyrene biodegradation using enterobacter sp. MM087 (KT933254) isolated from used engine oil contaminated soil. Egyptian Journal of Petroleum 27 (3):349–59. doi: 10.1016/j.ejpe.2017.06.001.
  • Urana, R., A. Dahiya, P. Sharma, and N. Singh. 2021. Effects of plant growth promoting rhizobacteria on phytoremediation of phenanthrene contaminated sodic soil. Polycyclic Aromatic Compounds 41 (5):1020–9. doi: 10.1080/10406638.2019.1639063.
  • Urana, R., N. Singh, and P. Sharma. 2019. Effects of PGPR on growth and photosynthetic pigment of trigonella foenum-graceum and brassica juncea in PAH-contaminated soil. SN Applied Sciences 1 (7):761. doi: 10.1007/s42452-019-0780-1.
  • Větrovský, T., and P. Baldrian. 2013. The variability of the 16S RRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLOS One 8 (2):e57923. doi: 10.1371/journal.pone.0057923.
  • Wang, C., Y. Huang, Z. Zhang, and H. Wang. 2018. Salinity effect on the metabolic pathway and microbial function in phenanthrene degradation by a halophilic consortium. AMB Express 8 (1):67.
  • Wang, R., B. Wu, J. Zheng, H. Chen, P. Rao, L. Yan, and F. Chai. 2020. Biodegradation of total petroleum hydrocarbons in soil: Isolation and characterization of bacterial strains from oil contaminated soil. Applied Sciences 10 (12):4173. doi: 10.3390/app10124173.
  • Xia, W., Z. Du, Q. Cui, H. Dong, F. Wang, P. He, and Y. Tang. 2014. Biosurfactant produced by novel pseudomonas sp. WJ6 with biodegradation of n-alkanes and polycyclic aromatic hydrocarbons. Journal of Hazardous Materials 276 (July):489–98. doi: 10.1016/j.jhazmat.2014.05.062.
  • Zhang, S., Z. Hu, and H. Wang. 2019. Metagenomic analysis exhibited the co-metabolism of polycyclic aromatic hydrocarbons by bacterial community from estuarine sediment. Environment International 129 (August):308–19. doi: 10.1016/j.envint.2019.05.028.
  • Zhang, X.-X., S.-P. Cheng, C.-J. Zhu, and S.-L. Sun. 2006. Microbial PAH-degradation in soil: Degradation pathways and contributing factors. Pedosphere 16 (5):555–65. doi: 10.1016/S1002-0160(06)60088-X.
  • Zhang, Y., and S. Tao. 2009. Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmospheric Environment 43 (4):812–9. doi: 10.1016/j.atmosenv.2008.10.050.
  • Zhao, H.-P., Q.-S. Wu, L. Wang, X.-T. Zhao, and H.-W. Gao. 2009. Degradation of phenanthrene by bacterial strain isolated from soil in oil refinery fields in Shanghai China. Journal of Hazardous Materials 164 (2–3):863–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.