123
Views
0
CrossRef citations to date
0
Altmetric
Articles

Optimizing rapid pentachlorophenol biodegradation using response surface methodology

& ORCID Icon
Pages 325-344 | Published online: 24 Jun 2022

References

  • Abdel-Fattah, Y. R., E. R. El-Helow, K. Ghanem, and W. Lotfy. 2007. Application of factorial designs for optimization of avicelase production by a thermophilic geobacillus isolate. Research Journal of Microbiology 2 (1):13–23. doi: 10.3923/jm.2007.13.23.
  • Agarry, S., B. Solomon, and T. Audu. 2010. Optimization of process variables for the batch degradation of phenol by pseudomonas fluorescence using response surface methodology. International Journal of Chemical Technology 2 (2):33–45. doi: 10.3923/ijct.2010.33.45.
  • Alsingery, R. M. D. 2013. Determination of trace pentachlorophenol (PCP) in wastewater using solid phase extraction. Advances in Applied Science Research 4 (3):344–9.
  • Annadurai, G., L. Y. Ling, and J.-F. Lee. 2008. Statistical optimization of medium components and growth conditions by response surface methodology to enhance phenol degradation by pseudomonas putida. Journal of Hazardous Materials 151 (1): 171–8.
  • Arora, P. K., and H. Bae. 2014. Bacterial degradation of chlorophenols and their derivatives. Microbial Cell Factories 13 (1):31.
  • Arslan-Alaton, I., G. Tureli, and T. Olmez-Hanci. 2009. Treatment of azo dye production wastewaters using photo-fenton-like advanced oxidation processes: Optimization by response surface methodology. Journal of Photochemistry and Photobiology A: Chemistry 202 (2–3):142–53. doi: 10.1016/j.jphotochem.2008.11.019.
  • Bosso, L., and G. Cristinzio. 2014. A comprehensive overview of bacteria and fungi used for pentachlorophenol biodegradation. Reviews in Environmental Science and Bio/Technology 13 (4):387–427. doi: 10.1007/s11157-014-9342-6.
  • Cavazzuti, M. 2013. Response surface modelling. In Optimization methods: From theory to design scientific and technological aspects in mechanics, 43–76. Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Chandra, R., A. Ghosh, R. K. Jain, and S. Singh. 2006. Isolation and characterization of two potential pentachlorophenol degrading aerobic bacteria from pulp paper effluent sludge. The Journal of General and Applied Microbiology 52 (2):125–30.
  • Chaudhari, S. R., and A. A. Shirkhedkar. 2020. Application of Plackett-Burman and central composite designs for screening and optimization of factor influencing the chromatographic conditions of hptlc method for quantification of efonidipine hydrochloride. Journal of Analytical Science and Technology 11 (1):1–13. doi: 10.1186/s40543-020-00246-2.
  • Copley, S. D. 2000. Evolution of a metabolic pathway for degradation of a toxic xenobiotic: The patchwork approach. Trends in Biochemical Sciences 25 (6):261–5.
  • Czaplicka, M., and B. Kaczmarczyk. 2006. Infrared study of chlorophenols and products of their photodegradation. Talanta 70 (5):940–9.
  • Ebrahimpour, A., R. Abd Rahman, D. H. E. Ch'ng, M. Basri, and A. B. Salleh. 2008. A modeling study by response surface methodology and artificial neural network on culture parameters optimization for thermostable lipase production from a newly isolated thermophilic Geobacillus sp. Strain arm. BMC Biotechnology 8 (1):96–15. doi: 10.1186/1472-6750-8-96.
  • El-Bialy, H. A., O. Khalil, and O. M. Gomaa. 2019. Bacterial-mediated biodegradation of pentachlorophenol via electron shuttling. Environmental Technology 40 (18):2416–9. doi: 10.1080/09593330.2018.1442501.
  • Garbellini, G. S., G. R. Salazar-Banda, and L. A. Avaca. 2010. Effects of ultrasound on the degradation of pentachlorophenol by boron-doped diamond electrodes. Portugaliae Electrochimica Acta 28 (6):405–15.
  • Garg, S. K., M. Tripathi, S. K. Singh, and A. Singh. 2013. Pentachlorophenol dechlorination and simultaneous cr6+ reduction by pseudomonas putida skg−1 mtcc (10510): Characterization of pcp dechlorination products, bacterial structure, and functional groups. Environmental Science and Pollution Research International 20 (4):2288–304.
  • Gopinath, S. C. B. 2003. Statistical optimization of amylase production by aspergillus versicolor. Asian J Microbiol Biotechnol Environ Sci 5:327–30.
  • Hiebl, J., K. Lehnert, and W. Vetter. 2011. Identification of a fungi-derived terrestrial halogenated natural product in wild boar (sus scrofa). Journal of Agricultural and Food Chemistry 59 (11):6188–92.
  • Jiang, Y., J. Wen, X. Jia, Q. Caiyin, and Z. Hu. 2007. Mutation of candida tropicalis by irradiation with a He-Ne laser to increase its ability to degrade phenol. Applied and Environmental Microbiology 73 (1):226–31.
  • Jun, X., and W. Jianlong. 2008. Radiolysis of pentachlorophenol (PCP) in aqueous solution by gamma radiation. Journal of Environmental Sciences 20 (10):1153–7.
  • Kao, C. M., C. T. Chai, J. K. Liu, T. Y. Yeh, K. F. Chen, and S. C. Chen. 2004. Evaluation of natural and enhanced PCP biodegradation at a former pesticide manufacturing plant. Water Research 38 (3):663–72. doi: 10.1016/j.watres.2003.10.030.
  • Kao, C. M., J. K. Liu, Y. L. Chen, C. T. Chai, and S. C. Chen. 2005. Factors affecting the biodegradation of PCP by pseudomonas mendocina nsysu. Journal of Hazardous Materials 124 (1-3):68–73. doi: 10.1016/j.jhazmat.2005.03.051.
  • Karn, S. K., S. K. Chakrabarty, and M. S. Reddy. 2010a. Characterization of pentachlorophenol degrading bacillus strains from secondary pulp-and-paper-industry sludge. International Biodeterioration & Biodegradation 64 (7):609–13. doi: 10.1016/j.ibiod.2010.05.017.
  • Karn, S. K., S. K. Chakrabarty, and M. S. Reddy. 2010b. Pentachlorophenol degradation by Pseudomonas stutzeri cl7 in the secondary sludge of pulp and paper mill. Journal of Environmental Sciences 22 (10):1608–12. doi: 10.1016/S1001-0742(09)60296-5.
  • Khessairi, A., I. Fhoula, A. Jaouani, Y. Turki, A. Cherif, A. Boudabous, A. Hassen, and H. Ouzari. 2014. Pentachlorophenol degradation by Janibacter sp., a new actinobacterium isolated from saline sediment of arid land. BioMed Research International 2014:1–9. doi: 10.1155/2014/296472.
  • Lakshmi, M., V. Sridevi, M. N. Rao, and A. V. N. Swamy. 2011. Optimization of phenol degradation from pseudomonas aeruginosa (NCIM 2074) using response surface methodology. Int J Res Pharm Chem 1 (4):925–35.
  • Lee, S. G., B. D. Yoon, Y. H. Park, and H. M. Oh. 1998. Isolation of a novel pentachlorophenol-degrading bacterium, Pseudomonas sp. bu34. Journal of Applied Microbiology 85 (1):1–8.
  • Mosca Angelucci, D., D. Piscitelli, and M. C. Tomei. 2019. Pentachlorophenol biodegradation in two-phase bioreactors operated with absorptive polymers: Box-Behnken experimental design and optimization by response surface methodology. Process Safety and Environmental Protection 131:105–15. doi: 10.1016/j.psep.2019.09.005.
  • Neetha, J. N., P. Ujwal, K. G. Kumar, B. Chidananda, L. Goveas, and K. Sandesh. 2021. Aerobic biodegradation and optimization of 2,4-dichlorophenoxyacetic acid by e. Hormaechei subsp. Xiangfangensis and assessment of biodegraded metabolite toxicity. Environmental Technology & Innovation 24:102055. doi: 10.1016/j.eti.2021.102055.
  • Radehaus, P. M., and S. K. Schmidt. 1992. Characterization of a novel pseudomonas sp. That mineralizes high concentrations of pentachlorophenol. Applied and Environmental Microbiology 58 (9): 2879–85.
  • Rao, K. 2013. Pentachlorophenol: Chemistry, pharmacology, and environmental toxicology, vol. 12. New York, NY: Springer Science & Business Media.
  • Razem, D. 2008. Radiation sterilization of pharmaceuticals: An overview of the literature. Trends in radiation sterilization of health care products.
  • Rodenburg, L. A., S. Du, D. E. Fennell, and G. J. Cavallo. 2010. Evidence for widespread dechlorination of polychlorinated biphenyls in groundwater, landfills, and wastewater collection systems. Environmental Science & Technology 44 (19):7534–40. doi: 10.1021/es1019564.
  • Sai, K., K.-S. Kang, A. Hirose, R. Hasegawa, J. E. Trosko, and T. Inoue. 2001. Inhibition of apoptosis by pentachlorophenol in v-myc-transfected rat liver epithelial cells: Relation to down-regulation of gap junctional intercellular communication. Cancer Letters 173 (2):163–74. doi: 10.1016/S0304-3835(01)00616-4.
  • Sarhan, D. A., R. R. Shehata, Y. I. Kandil, M. A. Kotb, and E. A. El-Bassiouni. 2016. Influence of whole body x-irradiation on the liver and possible protective effect by the compatible solute ectoine in a mouse model. European Biophysics Journal 4 (3):16–21.
  • Shah, S., and I. S. Thakur. 2002. Enrichment and characterization of a microbial community from tannery effluent for degradation of pentachlorophenol. World Journal of Microbiology and Biotechnology 18 (7):693–8. doi: 10.1023/A:1016854205789.
  • Shen, D.-S., X.-W. Liu, and H.-J. Feng. 2005. Effect of easily degradable substrate on anaerobic degradation of pentachlorophenol in an upflow anaerobic sludge blanket (uasb) reactor. Journal of Hazardous Materials 119 (1-3):239–43. doi: 10.1016/j.jhazmat.2004.12.024.
  • Singh, S., R. Chandra, D. K. Patel, and V. Rai. 2007. Isolation and characterization of novel Serratia marcescens (ay927692) for pentachlorophenol degradation from pulp and paper mill waste. World Journal of Microbiology & Biotechnology 23 (12):1747–54.
  • Singh, S., B. B. Singh, R. Chandra, D. K. Patel, and V. Rai. 2009. Synergistic biodegradation of pentachlorophenol by Bacillus cereus (dq002384), Serratia marcescens (ay927692) and Serratia marcescens (dq002385). World Journal of Microbiology and Biotechnology 25 (10):1821–8. doi: 10.1007/s11274-009-0083-6.
  • Stams, A. J. M., J. Huisman, P. A. Garcia Encina, and G. Muyzer. 2009. Citric acid wastewater as electron donor for biological sulfate reduction. Applied Microbiology and Biotechnology 83 (5):957–63.
  • Thakur, I. S., P. K. Verma, and K. C. Upadhaya. 2001. Involvement of plasmid in degradation of pentachlorophenol by Pseudomonas sp. From a chemostat. Biochemical and Biophysical Research Communications 286 (1):109–13.
  • Tripathi, M., S. Vikram, R. K. Jain, and S. K. Garg. 2011. Isolation and growth characteristics of chromium (VI) and pentachlorophenol tolerant bacterial isolate from treated tannery effluent for its possible use in simultaneous bioremediation. Indian Journal of Microbiology 51 (1):61–9. doi: 10.1007/s12088-011-0089-2.
  • Watanabe, K., M. Manefield, M. Lee, and A. Kouzuma. 2009. Electron shuttles in biotechnology. Current Opinion in Biotechnology 20 (6):633–41.
  • Werheniammeri, R., S. Moknitlili, I. Mehri, S. Badi, and A. Hassen. 2016. Pentachlorophenol biodegradation by citrobacter freundii isolated from forest contaminated soil. Water, Air, & Soil Pollution 227 (10):1–12. doi: 10.1007/s11270-016-2959-z.
  • Xu, Y., L. Xue, Q. Ye, A. E. Franks, M. Zhu, X. Feng, J. Xu, and Y. He. 2018. Inhibitory effects of sulfate and nitrate reduction on reductive dechlorination of pcp in a flooded paddy soil. Frontiers in Microbiology 9:567. doi: 10.3389/fmicb.2018.00567.
  • Yang, C.-F., and C.-M. Lee. 2007. Enrichment, isolation, and characterization of phenol-degrading pseudomonas resinovorans strain p-1 and Brevibacillus sp. Strain p-6. International Biodeterioration & Biodegradation 59 (3):206–10. doi: 10.1016/j.ibiod.2006.09.010.
  • Yang, C.-F., C.-M. Lee, and C.-C. Wang. 2006. Isolation and physiological characterization of the pentachlorophenol degrading bacterium Sphingomonas chlorophenolica. Chemosphere 62 (5):709–14.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.