201
Views
4
CrossRef citations to date
0
Altmetric
Notes

Biosorption and bioaccumulation of nickel by probiotic lactic acid bacteria isolated from human feces

ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon
Pages 453-464 | Published online: 21 Jun 2022

References

  • Akhter, K., T. Ghous, S. Andleeb, S. Ejaz, B. A. Khan, and M. N. Ahmed. 2017. Bioaccumulation of heavy metals by metal-resistant bacteria isolated from tagetes minuta rhizosphere, growing in soil adjoining automobile workshops. Pakistan Journal of Zoology 49:1841–1846.
  • Alboghobeish, H., A. Tahmourespour, and M. Doudi. 2014. The study of Nickel Resistant Bacteria (NiRB) isolated from wastewaters polluted with different industrial sources. Journal of Environmental Health Science & Engineering 12:44.
  • Alimolaei, M., and M. Golchin. 2016. An efficient DNA extraction method for Lactobacillus casei, a difficult-to-lyse bacterium. International Journal of Enteric Pathogens 4 (1):1–6. doi: 10.17795/ijep32472.
  • Ameen, F. A., A. M. Hamdan, and M. Y. El-Naggar. 2020. Assessment of the heavy metal bioremediation efficiency of the novel marine lactic acid bacterium, Lactobacillus plantarum MF042018. Scientific Reports 10:314.
  • Ansari, M. I., and A. Malik. 2007. Biosorption of nickel and cadmium by metal resistant bacterial isolates from agricultural soil irrigated with industrial wastewater. Bioresource Technology 98 (16):3149–53.
  • Aryal, M., and M. Liakopoulou-Kyriakides. 2015. Bioremoval of heavy metals by bacterial biomass. Environmental Monitoring and Assessment 187:1–26.
  • Aslam, F., A. Yasmin, and S. Sohail. 2020. Bioaccumulation of lead, chromium, and nickel by bacteria from three different genera isolated from industrial effluent. International Microbiology 23 (2):253–61. doi: 10.1007/s10123-019-00098-w.
  • Begum, W., S. Rai, S. Banerjee, S. Bhattacharjee, M. H. Mondal, A. Bhattarai, and B. Saha. 2022. A comprehensive review on the sources, essentiality and toxicological profile of nickel. RSC Advances 12 (15):9139–53.
  • Belapurkar, P., P. Goyal, and A. Kar. 2016. In vitro evaluation of bioremediation capacity of a commercial probiotic, Bacillus coagulans, for chromium (VI) and lead (II) toxicity. Journal of Pharmacy and Bioallied Sciences 8 (4):272. doi: 10.4103/0975-7406.199344.
  • Bhakta, J., K. Ohnishi, Y. Munekage, K. Iwasaki, and M. Wei. 2012. Characterization of lactic acid bacteria-based probiotics as potential heavy metal sorbents. Journal of Applied Microbiology 112 (6):1193–206.
  • Cai, X., X. Zheng, D. Zhang, W. Iqbal, C. Liu, B. Yang, X. Zhao, X. Lu, and Y. Mao. 2019. Microbial characterization of heavy metal resistant bacterial strains isolated from an electroplating wastewater treatment plant. Ecotoxicology and Environmental Safety 181:472–80.
  • Chen, C., S. Zhao, G. Hao, H. Yu, H. Tian, and G. Zhao. 2017. Role of lactic acid bacteria on the yogurt flavour: A review. International Journal of Food Properties 20 (Suppl 1):S316–S330. doi: 10.1080/10942912.2017.1295988.
  • Chen, J., N. Li, S. Han, Y. Sun, L. Wang, Z. Qu, M. Dai, and G. Zhao. 2020. Characterization and bioremediation potential of nickel-resistant endophytic bacteria isolated from the wetland plant Tamarix chinensis. FEMS Microbiology Letters 367 (12):fnaa098. doi: 10.1093/femsle/fnaa098.
  • Chervona, Y., A. Arita, and M. Costa. 2012. Carcinogenic metals and the epigenome: Understanding the effect of nickel, arsenic, and chromium. Metallomics: Integrated Biometal Science 4 (7):619–27. doi: 10.1039/c2mt20033c.
  • Chintalpudi, V., R. Kanamarlapudi, U. Mallu, and S. Muddada. 2022. Isolation, identification, biosorption optimization, characterization, isotherm, kinetic and application of novel bacterium Chelatococcus sp. biomass for removal of Pb(II) ions from aqueous solutions. International Journal of Environmental Science and Technology 19 (3):1531–44. doi: 10.1007/s13762-021-03169-6.
  • Cui, Y., T. Hu, X. Qu, L. Zhang, Z. Ding, and A. Dong. 2015. Plasmids from food lactic acid bacteria: Diversity, similarity, and new developments. International Journal of Molecular Sciences 16 (6):13172–202. doi: 10.3390/ijms160613172.
  • Das, P., S. Sinha, and S. K. Mukherjee. 2014. Nickel bioremediation potential of Bacillus thuringiensis KUNi1 and some environmental factors in nickel removal. Bioremediation Journal 18 (2):169–77. doi: 10.1080/10889868.2014.889071.
  • Dobaradaran, S., M. Ali Zazuli, M. Keshtkar, S. Noshadi, M. Khorsand, F. Faraji Ghasemi, V. Noroozi Karbasdehi, L. Amiri, and F. Soleimani. 2016. Biosorption of fluoride from aqueous phase onto Padina sanctae crucis algae: Evaluation of biosorption kinetics and isotherms. Desalination and Water Treatment 57 (58):28405–16. doi: 10.1080/19443994.2016.1182081.
  • Dobaradaran, S., M. Kakuee, A. Pazira, M. Keshtkar, and M. Khorsand. 2015. Fluoride removal from aqueous solutions using Moringa oleifera seed ash as an environmental friendly and cheap biosorbent. Fresenius Environmental Bulletin 24:1269–74.
  • Dobaradaran, S., I. Nabipour, A. H. Mahvi, M. Keshtkar, F. Elmi, F. Amanollahzade, and M. Khorsand. 2014. Fluoride removal from aqueous solutions using shrimp shell waste as a cheap biosorbent. Fluoride 47:253–7.
  • Duda-Chodak, A., and U. Blaszczyk. 2008. The impact of nickel on human health. Journal of Elementology 13:685–93.
  • Fang, S., D. Cheng, Y. Huang, T. Hsu, and H. Lu. 2018. A pilot study of the influence of strains. Journal of Probiotics & Health 6:1–8. [Database][Mismatch
  • Feng, M., X. Chen, C. Li, R. Nurgul, and M. Dong. 2012. Isolation and identification of probiotics on hair toxic element levels after long-term supplement with different lactic acid bacteria an exopolysaccharide-producing lactic acid bacterium strain from Chinese Paocai and biosorption of Pb by its exopolysaccharide. Journal of Food Science 77:T111–T117.
  • Gänzle, M. G. 2015. Lactic metabolism revisited: Metabolism of lactic acid bacteria in food fermentations and food spoilage. Current Opinion in Food Science 2:106–17. doi: 10.1016/j.cofs.2015.03.001.
  • Genchi, G., A. Carocci, G. Lauria, M. S. sinicropi, and A. Catalano. 2020. Nickel: Human health and environmental toxicology. International Journal of Environmental Research 17:679.
  • Ghasemi, F. F., S. Dobaradaran, M. Keshtkar, M. Mohammadi, H. Ghaedi, and F. Soleimani. 2016. Biosorption of MN(II) from aqueous solution by Sargassum hystrix algae obtained from the Persian Gulf: Biosorption isotherm and kinetic. International Journal of Pharmacy and Technology 8:18227–38.
  • Ghasemi, F. F., S. Dobaradaran, A. Raeisi, A. Esmaili, M. J. Mohammadi, M. Keshtkar, S. G. Nasab, and F. Soleimani. 2016. Data on Fe(II) biosorption onto Sargassum hystrix algae obtained from the Persian Gulf in Bushehr Port, Iran. Data in Brief 9:823–7. doi: 10.1016/j.dib.2016.10.018.
  • Grujović, M. Ž., K. G. Mladenović, T. Semedo-Lemsaddek, M. Laranjo, O. D. Stefanović, and S. D. Kocić-Tanackov. 2022. Advantages and disadvantages of non-starter lactic acid bacteria from traditional fermented foods: Potential use as starters or probiotics. Comprehensive Reviews in Food Science and Food Safety 21 (2):1537–67. doi: 10.1111/1541-4337.12897.
  • Haber, L. T., H. K. Bates, B. C. Allen, M. J. Vincent, and A. R. Oller. 2017. Derivation of an oral toxicity reference value for nickel. Regulatory Toxicology and Pharmacology 87:S1–S18. doi: 10.1016/j.yrtph.2017.03.011.
  • Halttunen, T., S. Salminen, and R. Tahvonen. 2007. Rapid removal of lead and cadmium from water by specific lactic acid bacteria. International Journal of Food Microbiology 114 (1):30–5.
  • Heidari, P., F. Mazloomi, and S. Sanaeizade. 2020. Optimization study of nickel and copper bioremediation by Microbacterium oxydans Strain CM3 and CM7. Soil and Sediment Contamination: An International Journal 29 (4):438–51. doi: 10.1080/15320383.2020.1738335.
  • Henderson, R. G., J. Durando, A. R. Oller, D. J. Merkel, P. A. Marone, and H. K. Bates. 2012. Acute oral toxicity of nickel compounds. Regulatory Toxicology and Pharmacology 62 (3):425–32. doi: 10.1016/j.yrtph.2012.02.002.
  • Igiri, B. E., S. I. R. Okoduwa, G. O. Idoko, E. P. Akabuogu, A. O. Adeyi, and I. K. Ejiogu. 2018. Toxicity and bioremediation of heavy metals contaminated ecosystem from tannery wastewater: A review. Journal of Toxicology 2018:2568038.
  • Jacob, J. M., C. Karthik, R. G. Saratale, S. S. Kumar, D. Prabakar, K. Kadirvelu, and A. Pugazhendhi. 2018. Biological approaches to tackle heavy metal pollution: A survey of literature. Journal of Environmental Management 217:56–70.
  • Kadirvelu, K., and C. Namasivayam. 2003. Activated carbon from coconut coirpith as metal adsorbent: Adsorption of Cd(II) from aqueous solution. Advances in Environmental Research 7 (2):471–8. doi: 10.1016/S1093-0191(02)00018-7.
  • Karthik, C., S. Barathi, A. Pugazhendhi, V. S. Ramkumar, N. B. D. Thi, and P. I. Arulselvi. 2017. Evaluation of Cr (VI) reduction mechanism and removal by cellulosimicrobium funkei strain AR8, a novel haloalkaliphilic bacterium. Journal of Hazardous Materials 333:42–53.
  • Keshtkar, M., S. Dobaradaran, S. Keshmiri, B. Ramavandi, H. Arfaeinia, and H. Ghaedi. 2019. Effective parameters, equilibrium, and kinetics of fluoride adsorption on Prosopis cineraria and Syzygium cumini leaves. Environmental Progress & Sustainable Energy 38 (Suppl 1):S429–S440. doi: 10.1002/ep.13118.
  • Kinoshita, H. 2019. Biosorption of heavy metals by lactic acid bacteria for detoxification. Methods in Molecular Biology 1887:145–157.
  • Kinoshita, H., Y. Sohma, F. Ohtake, M. Ishida, Y. Kawai, H. Kitazawa, T. Saito, and K. Kimura. 2013. Biosorption of heavy metals by lactic acid bacteria and identification of mercury binding protein. Research in Microbiology 164 (7):701–9.
  • Kirillova, A. V., A. A. Danilushkina, D. S. Irisov, N. L. Bruslik, R. F. fakhrullin, Y. A. Zakharov, V. S. Bukhmin, and D. R. Yarullina. 2017. Assessment of resistance and bioremediation ability of lactobacillus strains to lead and cadmium. International Journal of Microbiology 2017:9869145.
  • Kuanar, A., S. K. Kabi, M. Rath, N. K. Dhal, R. Bhuyan, S. Das, and D. Kar. 2022. A comparative review on bioremediation of chromium by bacterial, fungal, algal and microbial consortia. Geomicrobiology Journal 39:1–16. doi: 10.1080/01490451.2022.2035019.
  • Lai, W., R. Cai, K. Yang, T. Yue, Z. Gao, Y. Yuan, and Z. Wang. 2022. Detoxification of patulin by Lactobacillus pentosus DSM 20314 during apple juice fermentation. Food Control 131:108446. doi: 10.1016/j.foodcont.2021.108446.
  • Li, H., J. Yao, R. Duran, B. Roha, N. Karapinar, G. Jordan, T. Minkina, J. Gu, C. Lu, N. Min, et al. 2020. Effects of typical flotation reagent on microbial toxicity and nickel bioavailability in soil. Chemosphere 240:124913. doi: 10.1016/j.chemosphere.2019.124913.
  • Liu, Y., M. Wu, B. Xu, and L. Kang. 2022. Association between the urinary nickel and the diastolic blood pressure in general population. Chemosphere 286 (Part 3):131900.
  • Mahvi, A. H., S. Dobaradaran, R. Saeedi, M. J. Mohammadi, M. Keshtkar, A. Hosseini, M. Moradi, and F. F. Ghasemi. 2018. Determination of fluoride biosorption from aqueous solutions using Ziziphus leaf as an environmentally friendly cost effective biosorbent. Fluoride 51:220–9.
  • Malik, A. 2004. Metal bioremediation through growing cells. Environment International 30 (2):261–78. doi: 10.1016/j.envint.2003.08.001.
  • Massoud, R., M. R. Hadiani, P. Hamzehlou, and K. Khosravi-Darani. 2019. Bioremediation of heavy metals in food industry: Application of Saccharomyces cerevisiae. Electronic Journal of Biotechnology. 37:56–60. doi: 10.1016/j.ejbt.2018.11.003.
  • Monachese, M. A. 2012. Sequesteration of lead, cadmium and arsenic by Lactobacillus species and detoxication potential. Electronic Thesis and Dissertation Repository. 729. https://ir.lib.uwo.ca/etd/729
  • Mrvčić, J., D. Stanzer, E. Šolić, and V. Stehlik-Tomas. 2012. Interaction of lactic acid bacteria with metal ions: Opportunities for improving food safety and quality. World Journal of Microbiology & Biotechnology 28 (9):2771–82.
  • Nishimura, J. 2014. Exopolysaccharides produced from Lactobacillus delbrueckii subsp. bulgaricus. Advances in Microbiology 04 (14):1017–23. doi: 10.4236/aim.2014.414112.
  • Öztürk, A., T. Artan, and A. Ayar. 2004. Biosorption of nickel (II) and copper (II) ions from aqueous solution by Streptomyces coelicolor A3 (2). Colloids and Surfaces B: Biointerfaces 34 (2):105–11. doi: 10.1016/j.colsurfb.2003.11.008.
  • Paul, A., and S. K. Mukherjee. 2016. Enterobacter asburiae KUNi5, a nickel resistant bacterium for possible bioremediation of nickel contaminated sites. Polish Journal of Microbiology 65 (1):115–18.
  • Prithviraj, D., K. Deboleena, N. Neelu, N. Noor, R. Aminur, K. Balasaheb, and M. Abul. 2014. Biosorption of nickel by Lysinibacillus sp. BA2 native to bauxite mine. Ecotoxicology and Environmental Safety 107:260–8.
  • Ray, S. A., and M. K. Ray. 2009. Bioremediation of heavy metal toxicity-with special reference to chromium. Al Ameen Journal of Medical Sciences 2:57–63.
  • Rodríguez, C. E., and A. Quesada. 2006. Nickel biosorption by Acinetobacter baumannii and Pseudomonas aeruginosa isolated from industrial wastewater. Brazilian Journal of Microbiology 37 (4):465–7. doi: 10.1590/S1517-83822006000400012.
  • Rohani, M., N. Noohi, M. Talebi, M. Katouli, and M. R. Pourshafie. 2015. Highly heterogeneous probiotic Lactobacillus species in healthy iranians with low functional activities. PLoS One 10 (12):e0144467.
  • Sar, P., S. Kazy, and S. Singh. 2001. Intracellular nickel accumulation by Pseudomonas aeruginosa and its chemical nature. Letters in Applied Microbiology 32 (4):257–61.
  • Sari, A., D. Mendil, M. Tuzen, and M. Soylak. 2008. Biosorption of Cd (II) and Cr (III) from aqueous solution by moss (Hylocomium splendens) biomass: Equilibrium, kinetic and thermodynamic studies. Chemical Engineering Science 144 (1):1–9. doi: 10.1016/j.cej.2007.12.020.
  • Selta, D. R. F., S. Bs, R. Mahendran, B. Thankappan, G. Muthusamy, V. Balasubramanian, and A. Jayaraman. In press. Bacillus siamensis I7B strain as heavy metal quencher and probiotics; isolated from gut of Stolepherous commersonni.
  • Sonnenburg, J. L., L. T. Angenent, and J. I. Gordon. 2004. Getting a grip on things: How do communities of bacterial symbionts become established in our intestine? Nature Immunology 5 (6):569–73. doi: 10.1038/ni1079.
  • Uddin, A. H., R. S. Khalid, U. A. Khan, and S. A. Abbas. 2014. Optimization of acid digestion methods for the determination of heavy metals in traditional medicine samples by atomic absorption spectrometry. 171.
  • Vaid, N., J. Sudan, S. Dave, H. Mangla, and H. Pathak. 2022. Insight Into microbes and plants ability for bioremediation of heavy metals. Current Microbiology 79 (5):1–15. doi: 10.1007/s00284-022-02829-1.
  • Valls, M., and V. De Lorenzo. 2002. Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiology Reviews 26 (4):327–38. doi: 10.1111/j.1574-6976.2002.tb00618.x.
  • Verma, S., and A. Kuila. 2019. Bioremediation of heavy metals by microbial process. Environmental Technology & Innovation 14:100369. doi: 10.1016/j.eti.2019.100369.
  • Vineetha, N., R. Vignesh, and D. Sridhar. 2015. Preparation, standardization of antibiotic discs and study of resistance pattern for first-line antibiotics in isolates from clinical samples. International Journal of Applied Research 1:624–31.
  • Vinusha, K. S., K. Deepika, T. S. Johnson, G. K. Agrawal, and R. Rakwal. 2018. Proteomic studies on lactic acid bacteria: A review. Biochemistry and Biophysics Reports 14:140–8. doi: 10.1016/j.bbrep.2018.04.009.
  • Wierzba, S. 2015. Removal of Cu(II) and Pb(II) from aqueous solutions by lactic acid bacteria. Proceedings of ECOpole 9:505–12.
  • Wu, G., X. Xiao, P. Feng, F. Xie, Z. Yu, W. Yuan, P. Liu, and X. Li. 2017. Gut remediation: A potential approach to reducing chromium accumulation using Lactobacillus plantarum TW1-1. Scientific Reports 7 (1):15000. doi: 10.1038/s41598-017-15216-9.
  • Yadav, S., and A. Mishra. 2022. Fungal biosorption of the heavy metals chromium(VI) and nickel from industrial effluent-contaminated soil. Journal of Applied and Natural Science 14 (1):233–9. doi: 10.31018/jans.v14i1.3297.
  • Zafari, M., M. Mansouri, S. Omidghaemi, A. Yazdani, S. Pourmotabed, A. Hasanpour Dehkordi, H. Nosrati, M. Validi, and E. Sharifi. 2020. Physical and biological properties of blend-electrospun polycaprolactone/chitosan-based wound dressings loaded with N-decyl-N, N-dimethyl-1-decanaminium chloride: An in vitro and in vivo study. Journal of Biomedical Materials Research Part B: Applied Biomaterials 108 (8):3084–98. doi: 10.1002/jbm.b.34636.
  • Zhai, Q., F. Tian, J. Zhao, H. Zhang, A. Narbad, and W. Chen. 2016. Oral administration of probiotics inhibits absorption of the heavy metal cadmium by protecting the intestinal barrier. Applied and Environmental Microbiology 82 (14):4429–40.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.