199
Views
0
CrossRef citations to date
0
Altmetric
Articles

New approach of antioxidant properties of Zinnia elegans using bioremediation of Pb-contaminated soils

, , , &
Pages 345-362 | Published online: 27 Jul 2022

References

  • Aebi, H. 1984. Catalase in vitro. Methods in Enzymology 105:121–6.
  • Aki, C., E. Guneysu, and O. Acar. 2009. Effect of industrial waste water on total protein and the peroxidase activity in plants. African Journal of Biotechnology 8 (20):5445–8.
  • Ali, S., R. Muhammad, W. Abdul, B. H. Muhammad, H. Afzal, L. Shiliang, A. A. Abdulaziz, H. Abeer, and F. Abd_Allah Elsayed. 2018. Fulvic acid prevents chromium-induced morphological, photosynthetic, and oxidative alterations in wheat irrigated with tannery waste water. Journal of Plant Growth Regulation 37 (4):1357–67. doi: 10.1007/s00344-018-9843-6.
  • Aransiola, S. A., U. J. J. Ijah, and O. P. Abioye. 2013. Phytoremediation of lead polluted soil by Glycine max L. Applied and Environmental Soil Science 2013:1–7. doi: 10.1155/2013/631619.
  • Arias, J. A., J. R. Peralta-Videa, J. T. Ellzey, M. Ren, M. N. Viveros, and J. L. Gardea-Torresdey. 2010. Effects of glomusdeserticola inoculation on prosopis: Enhancing chromium and lead uptake and translocation as confirmed by X-ray mapping, ICP-OES and TEM techniques. Environmental and Experimental Botany 68 (2):139–48. doi: 10.1016/j.envexpbot.2009.08.009.
  • Awad, M., M. A. El-Desoky, A. Ghallab, J. Kubes, S. E. Abdel-Mawly, S. Danish, D. Ratnasekera, M. Sohidul Islam, M. Skalicky, M. Brestic, et al. 2021a. Ornamental plant efficiency for heavy metals phytoextraction from contaminated soils amended with organic materials. Molecules 26 (11):3360. doi: 10.3390/molecules26113360.
  • Ayala, A., M. F. Munoz, and S. Arguelles. 2014. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2- nonenal. Oxidative Medicine and Cellular Longevity 2014:1–31. doi: 10.1155/2014/360438.
  • Bandiera, M., G. Mosca, and T. Vamerali. 2009. Humic acids affect root characteristics of fodder radish (Raphanus sativus L. var. oleiformis Pers.) in metal-polluted wastes. Desalination 246 (1-3):78–91. doi: 10.1016/j.desal.2008.03.044.
  • Bankaji, I., I. Caçador, and I. Sleimi. 2015. Physiological and biochemical responses of Suaeda fruticosa to cadmium and copper stresses: Growth, nutrient uptake, antioxidant enzymes, phytochelatin, and glutathione levels. Environmental Science and Pollution Research International 22 (17):13058–69. doi: 10.1007/s11356-015-4414-x.
  • Bansal, R., S. Priya, H. K. Dikshit, S. R. Jacob, M. Rao, R. S. Bana, J. Kumari, K. Tripathi, A. Kumar, S. Kumar, et al. 2021. Growth and antioxidant responses in iron-biofortified lentil under cadmium stress. Toxics 9 (8):182. doi: 10.3390/toxics9080182.
  • Benzarti, S., S. Mohri, and Y. Ono. 2008. Plant response to heavy metal toxicity: Comparative study between the hyperaccumulator Thlaspi caerulescens (ecotype Ganges) and nonaccumulator plants: Lettuce, radish, and alfalfa. Environmental Toxicology 23 (5):607–16. doi: 10.1002/tox.20405.
  • Bharwana, S. A., S. Ali, M. A. Farooq, N. Iqbal, A. Hameed, F. Abbas, and M. S. A. Ahmad. 2014. Glycine betaine-induced lead toxicity tolerance related to elevated photosynthesis, antioxidant enzymes suppressed lead uptake and oxidative stress in cotton. Turkish Journal of BOTANY 38:281–92. doi: 10.3906/bot-1304-65.
  • Biyani, K., D. K. Tripathi, J. H. Lee, and S. Muneer. 2019. Dynamic role of iron supply in amelioration of cadmium stress by modulating antioxidative pathways and peroxidase enzymes in mungbean. AoB PLANTS 11 (2):plz005. doi: 10.1093/aobpla/plz005.
  • Blokhina, O., E. Virolainen, and K. V. Fagerstedt. 2003. Antioxidants, oxidative damage and oxygen deprivation stress: A review. Annals of Botany 91 (2):179–94. doi: 10.1093/aob/mcf118.
  • Butcher, D. J. 2009. Phytoremediation of lead in soil: Recent applications and future prospects. Applied Spectroscopy Reviews 44 (2):123–39. doi: 10.1080/05704920802352580.
  • Chaab, A., A. Moezzi, G. Sayyad, and M. Chorom. 2016. Alleviation of cadmium toxicity to maize by the application of humic acid and compost. Life Science Journal 13 (12):56–63.
  • Chawla, A., K. P. Patel, R. M. Jadav, and M. N. Reddy. 2017. Effect of lead stress on antioxidative enzymes in leaves, stem and roots of a mangrove Avicennia marina. Bioscience Discovery 8 (4):733–7.
  • Chernyshuk, D. K., L. Y. Ivachenko, H. DoğaN, G. Raza, M. A. Ali, K. S. Golokhvast, and M. A. Nawaz. 2020. Dihydroquercetin increases the adaptive potential of wild soybean against copper sulfate and cadmium sulfate toxicity. Turkish Journal of Agriculture and FORESTRY 44 (5):492–9. doi: 10.3906/tar-1912-50.
  • Dipu, S., A. A. Kumar, and S. G. Thanga. 2012. Effect of chelating agents in phytoremediation of heavy metals. Remediation Journal 22 (2):133–46. doi: 10.1002/rem.21304.
  • Duan, D., J. Tong, Q. Xu, L. Dai, J. Ye, H. Wu, C. Xu, and J. Shi. 2020. Regulation mechanisms of humic acid on Pb stress in tea plant (Camellia sinensis L.). Environmental Pollution (Barking, Essex: 1987) 267:115546. doi: 10.1016/j.envpol.2020.115546.
  • Dugar, D., and A. Bafna. 2013. Effect of lead stress on chlorophyll content, malondialdehyde and peroxidase activity in seedlings of mung bean (Vigna radiata). Journal of Research in Chemistry and Environment 3 (3):20–5.
  • Ehsan, N., R. Nawaz, S. Ahmad, M. Arshad, M. Umair, and M. Sarmad. 2016. Remediation of heavy metal-contaminated soil by ornamental Plant Zinnia (Zinnia elegance L.). Asian Journal of Chemistry 28 (6):1338–42. doi: 10.14233/ajchem.2016.19701.
  • Evangelou, M., M. Ebel, and A. Schaeffer. 2007. Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere 68 (6):989–1003. doi: 10.1016/j.chemosphere.2007.01.062.
  • Feng, K., J. Yu, Y. Cheng, M. Ruan, R. Wang, Q. Ye, G. Zhou, Z. Li, Z. Yao, Y. Yang, et al. 2016. The SOD gene family in tomato: Identification, phylogenetic relationships, and expression patterns. Frontiers in Plant Science 7:1279.
  • Giannopolitis, C. N., and S. K. Ries. 1977. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology 59 (2):309–14. doi: 10.1104/pp.59.2.309.
  • Grzegorska, A., P. Rybarczyk, A. Rogala, and D. Zabrocki. 2020. Phytoremediation from environment cleaning to energy generation current status and future perspectives. Energies 13 (11):2905. doi: 10.3390/en13112905.
  • Gul, I. M. Manzoor, N. Hashim, J. Kallerhoff, and M. Arshad. 2018. Comparison of EDTA, citric acid and TiO2 nanoparticles to support Cd phytoaccumulation in spiked soil. Proceedings of the 2nd International Conference of Recent Trends in Environmental Science and Engineering (RTESE'18) Niagara Falls, Canada. doi: 10.11159/rtese18.119.
  • Guo, Y. 1995. Genotypic differences in uptake and translocation of cadmium and nickel in different plant species. Stuttgart: Verlag Ulrich E Grauer.
  • Gupta, D. K., F. T. Nicoloso, M. R. C. Schetinger, L. V. Rossato, L. B. Pereira, G. Y. Castro, S. Srivastava, and R. D. Tripathi. 2009. Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. Journal of Hazardous Materials 172 (1):479–84. doi: 10.1016/j.jhazmat.2009.06.141.
  • Gutiérrez-Martínez, P. B., M. I. Torres-Morán, M. C. Romero-Puertas, J. Casas-Solís, P. Zarazúa-Villaseñor, E. Sandoval-Pinto, and B. C. Ramírez-Hernández. 2020. Assessment of antioxidant enzymes in leaves and roots of phaseolus vulgaris plants under cadmium stress. Biotecnia 22 (2):110–8. doi: 10.18633/biotecnia.v22i2.1252.
  • Halim, M., P. Conte, and A. Piccolo. 2003. Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances. Chemosphere 52 (1):265–75. doi: 10.1016/S0045-6535(03)00185-1.
  • Hatice, D., U. Veli, and E. Abdullah. 2021. Lead phytoremediation potential of wild type and transgenic tobacco plants. ISPEC Journal of Agriculture Science 5:168–82.
  • Herzog, V., and H. Fahimi. 1973. Determination of the activity of peroxidase. Analytical Biochemistry 55 (2):554–62. doi: 10.1016/0003-2697(73)90144-9.
  • Kandziora-Ciupa, M., R. Ciepał, A. Nadgórska-Socha, and G. Barczyk. 2016. Accumulation of heavy metals and antioxidant responses in Pinus sylvestris L. needles in polluted and non-polluted sites. Ecotoxicology 25 (5):970–81. doi: 10.1007/s10646-016-1654-6.
  • Kaya, C., N. A. Akram, M. Ashraf, and O. Sonmez. 2018. Exogenous application of humic acid mitigates salinity stress in maize (Zea mays L.) plants by improving some key physico-biochemical attributes. Cereal Research Communications 46 (1):67–78. doi: 10.1556/0806.45.2017.064.
  • Kiarostami, A., P. Moradi, and V. Abdousi. 2017. Refining properties of lavender (Lavandula spica L.) in cadmium contaminated environments. Iran Journal of Plant Physiology 8 (1):2277–84.
  • Kiran, S., G. B. Furtana, M. Talhouni, and Ş. Ş. Ellialtıoğlu. 2019. Drought stress mitigation with humic acid in two Cucumis melo L. genotypes differ in their drought tolerance. Bragantia 78 (4):490–7. doi: 10.1590/1678-4499.20190057.
  • Komarek, M., P. Tlustos, J. Száková, V. Chrastný, and V. Ettler. 2007. The use of maize and poplar in chelant-enhanced phytoextraction of lead from contaminated agricultural soils. Chemosphere 67 (4):640–51. doi: 10.1016/j.chemosphere.2006.11.010.
  • Kos, B., and D. Lestan. 2004. Chelator induced phytoextraction and in situ soil washing of Cu. Environmental Pollution (Barking, Essex: 1987) 132 (2):333–9. doi: 10.1016/j.envpol.2004.04.004.
  • Liang, F., Z. H. Guo, S. H. Men, X. Y. Xiao, C. Peng, L. H. Wu, and P. Christie. 2019. Extraction of Cd and Pb from contaminated-paddy soil with EDTA, DTPA, citric acid and FeCl3 and effects on soil fertility. Journal of Central South University 26 (11):2987–97. doi: 10.1007/s11771-019-4230-4.
  • Lindsay, W. L., and W. A. Norvell. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Science Society of America Journal 42 (3):421–8. doi: 10.2136/sssaj1978.03615995004200030009x.
  • Li, S., X. Sun, S. Li, Y. Liu, Q. Ma, and W. Zhou. 2021. Effects of amendments on the bioavailability, transformation and accumulation of heavy metals by pakchoi cabbage in a multi-element contaminated soil. RSC Advances 11 (8):4395–405. doi: 10.1039/d0ra09358k.
  • Liu, L., J. Li, G. Wu, H. Shen, G. Fu, and Y. Wang. 2021. Combined effects of biochar and chicken manure on maize (Zea mays L.) growth, lead uptake and soil enzyme activities under lead stress. PeerJ 9: E11754. doi: 10.7717/peerj.11754.
  • Li, Y., C. Zhou, M. Huang, J. Luo, X. Hou, P. Wu, and X. Ma. 2016. Lead tolerance mechanism in Conyza canadensis: Subcellular distribution, ultrastructure, antioxidative defense system, and phytochelatins. Journal of Plant Research 129 (2):251–62. doi: 10.1007/s10265-015-0776-x.
  • Madhava, K. V., and T. V. S. Sresty. 2000. Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan L. Millspaugh) in response to Zn and Ni stresses. Plant Science 157:113–28.
  • Malar, S., S. S. Vikram, P. Favas, and V. Perumal. 2016. Lead heavy metal toxicity induced changes on growth and antioxidative enzymes level in water hyacinths [Eichhornia crassipes (Mart.)]. Botanical Studies 55 (1):54. doi: 10.1186/s40529-014-0054-6.
  • Mallhi, Z. I., M. Rizwan, A. Mansha, Q. Ali, S. Asim, S. Ali, A. Hussain, S. H. Alrokayan, H. A. Khan, P. Alam, et al. 2019. Citric acid enhances plant growth, photosynthesis, and phytoextraction of lead by alleviating the oxidative stress in castor beans. Plants 8 (11):525. doi: 10.3390/plants8110525.
  • Marques, M. C., C. W. A. Nascimento, A. J. Da Silva, and A. Da Silva Gouveia-Neto. 2017. Tolerance of an energy crop (Jatropha curcas L.) to zinc and lead assessed by chlorophyll fluorescence and enzyme activity. South African Journal of Botany 112:275–82. doi: 10.1016/j.sajb.2017.06.009.
  • Meers, E., M. Hopgood, E. Lesage, P. Vervaeke, F. M. G. Tack, and M. G. Verloo. 2004. Enhanced phytoextraction: In search of EDTA alternatives enhanced phytoextraction: In search of EDTA alternatives. International Journal of Phytoremediation 6 (2):95–109. doi: 10.1080/16226510490454777.
  • Meng, J., Z. H. Cui, H. L. Zhang, J. Zhang, X. J. Tang, M. H. Wong, and S. D. Shan. 2021. Combined effects of arbuscular mycorrhizae fungus and composted pig manure on the growth of ryegrass and uptake of Cd and Zn in the soil from an e-waste recycling site. Environmental Science and Pollution Research International 28 (10):12677–85. doi: 10.1007/s11356-020-11215-y.
  • Michael, W. H. E., H. Daghan, and A. Schaeffer. 2004. The influence of humic acids on the phytoextraction of cadmium from soil. Chemosphere 57 (3):207–13. doi: 10.1016/j.chemosphere.2004.06.017.
  • Nie, C., X. Yang, N. K. Niazi, X. Xu, Y. Wen, J. Rinklebe, S. O. Yong, S. Xu, and H. Wang. 2018. Impact of sugarcane bagasse-derived biochar on heavy metal availability and microbial activity: A field study. Chemosphere 200:274–82. doi: 10.1016/j.chemosphere.2018.02.134.
  • Pizzeghello, D., O. Francioso, A. Ertani, A. Muscolo, and S. Nardi. 2013. Isopentenyl adenosine and cytokinin-like activity of different humic substances. Journal of Geochemical Exploration 129:70–5. doi: 10.1016/j.gexplo.2012.10.007.
  • Rahoui, S., C. Ben, A. Chaoui, Y. Martinez, A. Yamchi, M. Rickauer, L. Gentzbittel, and E. El Ferjani. 2014. Oxidative injury and antioxidant genes regulation in cadmium-exposed radicles of six contrasted Medicago truncatula genotypes. Environmental Science and Pollution Research International 21 (13):8070–83. doi: 10.1007/s11356-014-2718-x.
  • Rasouli-Sadaghiani, H., S. Karimi, H. Ashrafi Saeidlou, and Khodaverdiloo, M. H, Department of Soil Science, Faculty of Agriculture, Urmia University, Urmia, Iran. 2019. The effect of humic acid on the phytoremediation efficiency of Pb in the contaminated soils by wormwood plant (Artemicia absantium). Journal of Water and Soil Science 22 (4):261–78. doi: 10.29252/jstnar.22.4.261.
  • Razmi, B., R. Ghasemi-Fasaei, A. Ronaghi, and R. Mostowfizadeh-Ghalamfarsa. 2021. Investigation of factors affecting phytoremediation of multi-elements polluted calcareous soil using Taguchi optimization. Ecotoxicology and Environmental Safety 207:111315. doi: 10.1016/j.ecoenv.2020.111315.
  • Rengel, Z. 1995. Carbonic anhydrase activity in leaves of wheat genotypes differing in Zn efficiency. Journal of Plant Physiology 147 (2):251–6. doi: 10.1016/S0176-1617(11)81513-0.
  • Riaz, A., A. Younis, M. Hameed, and S. Kiran. 2010. Morphological and biochemical responses of turf grasses to water deficit conditions. Pakistan Journal of Botany 42 (5):3441–8.
  • Romero-Puertas, M. C., L. C. Terrón-Camero, M. A. Peláez-Vico, A. Olmedilla, and L. M. Sandalio. 2019. Reactive oxygen and nitrogen species as key indicators of plant responses to Cd stress. Environmental and Experimental Botany 161:107–99. doi: 10.1016/j.envexpbot.2018.10.012.
  • Rong, Q., K. Zhong, H. Huang, C. Li, C. Zhang, and X. Nong. 2020. Humic acid reduces the available cadmium, copper, lead, and zinc in soil and their uptake by tobacco. Applied Sciences 10 (3):1077. doi: 10.3390/app10031077.
  • Saini, I., A. Ashok, and K. Prashant. 2019. Influence of Biostimulants on Important Traits of Zinnia elegans Jacq. Under open field conditions. International Journal of Agronomy 2019:1–8. doi: 10.1155/2019/3082967.
  • Singh, A., and M. Agrawal. 2010. Effect of municipal waste water irrigation on availability of heavy metals and morpho-physiological characteristics of Beta vulgaris L. Tropical Plant Research 31 (5):727–36.
  • Singh, H., N. B. Singh, A. Singh, I. Hussain, and V. Yadav, 2017. Oxidative stress induced by lead in Vigna radiata L. seedling attenuated by exogenous nitric oxide. Tropical Plant Research 4 (2):225–34. doi: 10.22271/tpr.2017.v4.i2.031.
  • Srivastava, S., and R. S. Dubey. 2011. Manganese-excess induces oxidative stress, lowers the pool of antioxidants and elevates activities of key antioxidative enzymes in rice seedlings. Plant Growth Regulation 64 (1):1–16. doi: 10.1007/s10725-010-9526-1.
  • Thompson, D., E. Bush, and H. Kirk-Ballard. 2021. Lead phytoremediation in contaminated soils using ornamental landscape plants. Journal of Geoscience and Environment Protection 09 (05):152–64. doi: 10.4236/gep.2021.95011.
  • Velikova, V., I. Yordanov, and A. Edreva. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Science 151 (1):59–66. doi: 10.1016/S0168-9452(99)00197-1.
  • Wang, X., T. Lyu, R. Dong, H. Liu, and S. Wu. 2021. Dynamic evolution of humic acids during anaerobic digestion: Exploring an effective auxiliary agent for heavy metal remediation. Bioresource Technology 320 (Pt A):124331. doi: 10.1016/j.biortech.2020.124331.
  • Wang, H., X. Shan, T. Liu, Y. Xie, B. Wen, S. Zhang, F. Han, and M. T. Genuchten. 2007. Organic acids enhance the uptake of lead by wheat roots. Planta 225 (6):1483–94. doi: 10.1007/s00425-006-0433-7.
  • Wang, J., S. Ye, S. Xue, W. Hartley, H. Wu, and L. Shi. 2018. Te physiological response of Mirabilis jalapa Linn. to lead stress and accumulation. International Biodeterioration & Biodegradation 128 (3):11–4. doi: 10.1016/j.ibiod.2016.04.030.
  • Wei, C. Y., and T. B. Chen. 2006. Arsenic accumulation by two brake ferns growing on an arsenic mine and their potential in phytoremediation. Chemosphere 63 (6):1048–53. doi: 10.1016/j.chemosphere.2005.09.061.
  • Xu, Y. L., B. Seshadri, B. Sarkar, H. L. Wang, C. Rumpel, D. Sparks, M. Farrell, T. Hall, X. D. Yang, and N. Bolan. 2018. Biochar modulates heavy metal toxicity and improves microbial carbon use efficiency in soil. Science of the Total Environment 621 (2):148–59. doi: 10.1016/j.scitotenv.2017.11.214.
  • Yasir, H., T. Lin, W. Xiaozi, H. Bilal, Y. Muhammad, Z. A. Muhammad, and Y. Xiaoe. 2018. Immobilization of cadmium and lead in contaminated paddy field using inorganic and organic additives. Science Repots 8:17839–49.
  • Yazdanbakhsh, A., S. N. Alavi, S. A. Valadabadi, F. Karimi, and Z. Karimi. 2020. Heavy metals uptake of salty soils by ornamental sunflower, using cow manure and biosolids: A case study in Alborz city, Iran. Air, Soil and Water Research 13:117862211989846. doi: 10.1177/1178622119898460.
  • Zama, E. F., B. J. Reid, H. P. H. Arp, G. X. Sun, H. Y. Yuan, and Y. G. Zhu. 2018. Advances in research on the use of biochar in soil for remediation: A review. Journal of Soils and Sediments 18 (7):2433–50. doi: 10.1007/s11368-018-2000-9.
  • Zayneb, C., K. Bassem, K. Zeineb, C. D. Grubb, D. Noureddine, M. Hafedh, and E. Amine. 2015. Physiological responses of fenugreek seedlings and plants treated with cadmium. Environmental Science and Pollution Research International 22 (14):10679–89. doi: 10.1007/s11356-015-4270-8.
  • Zhang, H., Q. Guo, J. Yang, T. Chen, T. Zhu, M. Peters, R. Wei, L. Tian, C. Wang, D. Tan, et al. 2014. Cadmium accumulation and tolerance of two castor cultivars in relation to antioxidant systems. Journal of Environmental Science 13 (2):33–40.
  • Zhang, H.-H., M. Tang, H. Chen, C.-L. Zheng, and Z.-C. Niu. 2010. Effect of inoculation with AM fungi on lead uptake, translocation and stress alleviation of Zea mays L. seedlings planting in soil with increasing lead concentrations. European Journal of Soil Biology 46 (5):306–11. doi: 10.1016/j.ejsobi.2010.05.006.
  • Zhou, H., H. Meng, L. Zhao, Y. Shen, Y. Hou, H. Cheng, and L. Song. 2018. Effect of biochar and humic acid on the copper, lead, and cadmium passivation during composting. Bioresource Technology 258:279–86. doi: 10.1016/j.biortech.2018.02.086.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.