228
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Bioremediation of acid mine drainage contaminated soils using bioattenuation, wastewater and air-injection system

&
Pages 363-381 | Published online: 06 Oct 2022

References

  • Ackman, T. E, and R. L. P. Kleinmann. 1984. In-line aeration and treatment of acid mine drainage. Washington DC: US Department of the Interior, Bureau of Mines.
  • Adriano, D. C. 2013. Trace elements in the terrestrial environment. New York: Springer Science & Business Media.
  • Alexander, M. 1999. Biodegradation and bioremediation. Oxford, United Kingdom: Gulf Professional Publishing.
  • Amanchukwu, S., A. Obafemi, and G. Okpokwasili. 1989. Hydrocarbon degradation and utilization by a palm-wine yeast isolate. FEMS Microbiology Letters 57 (2):151–4. doi: 10.1111/j.1574-6968.1989.tb03290.x.
  • Amenorfenyo, D. K., X. Huang, Y. Zhang, Q. Zeng, N. Zhang, J. Ren, and Q. Huang. 2019. Microalgae brewery wastewater treatment: potentials, benefits and the challenges. International Journal of Environmental Research and Public Health 16 (11):1910. doi: 10.3390/ijerph16111910.
  • Anekwe, I. M. S, and Y. M. Isa. 2021a. Comparative evaluation of wastewater and bioventing system for the treatment of acid mine drainage contaminated soils. Water-Energy Nexus 4:134–40. doi: 10.1016/j.wen.2021.08.001.
  • Anekwe, I. M, and Y. M. Isa. 2021b. Wastewater and bioventing treatment systems for acid mine drainage–contaminated soil. Soil and Sediment Contamination: An International Journal 30 (5):518–31. doi: 10.1080/15320383.2020.1863909.
  • APHA, A. P. H. A., American Water Works Association 1995. Standard methods for the examination of water and wastewater. In Standard methods for the examination of water and wastewater, 1000. Washington, DC: American Public Health Association.
  • Awasthi, M. K., A. K. Pandey, P. S. Bundela, and J. Khan. 2015. Co-composting of organic fraction of municipal solid waste mixed with different bulking waste: Characterization of physicochemical parameters and microbial enzymatic dynamic. Bioresource Technology 182:200–7. doi: 10.1016/j.biortech.2015.01.104.
  • Bai, H., Y. Kang, H. Quan, Y. Han, J. Sun, and Y. Feng. 2013. Treatment of acid mine drainage by sulfate reducing bacteria with iron in bench scale runs. Bioresource Technology 128:818–22.
  • Balintova, M, and A. Petrilakova. 2011. Study of pH influence on selective precipitation of heavy metals from acid mine drainage. Chemical Engineering Transactions 25:1–6.
  • Baranowski, R., A. Rybak, and I. Baranowska. 2002. Speciation analysis of elements in soil samples by XRF. Polish Journal of Environmental Studies 11 (5):473–82.
  • Benner, S., D. Blowes, C. Ptacek, and K. Mayer. 2002. Rates of sulfate reduction and metal sulfide precipitation in a permeable reactive barrier. Applied Geochemistry 17 (3):301–20. doi: 10.1016/S0883-2927(01)00084-1.
  • Berghorn, G. H, and G. R. Hunzeker. 2001. Passive treatment alternatives for remediating abandoned-mine drainage. Remediation Journal 11 (3):111–27. doi: 10.1002/rem.1007.
  • Bhagat, M., Burgess, J. E. Antunes, A. P. M. Whiteley, C. G, and Duncan, J. R. 2004. Precipitation of mixed metal residues from wastewater utilising biogenic sulphide. Minerals Engineering 17 (7–8):925–32. doi: 10.1016/j.mineng.2004.02.006.
  • Boopathy, R. 2000. Factors limiting bioremediation technologies. Bioresource Technology 74 (1):63–7. doi: 10.1016/S0960-8524(99)00144-3.
  • Burford, E., M. Fomina, and G. Gadd. 2003. Fungal involvement in bioweathering and biotransformation of rocks and minerals. Mineralogical Magazine 67 (6):1127–55. doi: 10.1180/0026461036760154.
  • Chang, I. S., P. K. Shin, and B. H. Kim. 2000. Biological treatment of acid mine drainage under sulphate-reducing conditions with solid waste materials as substrate. Water Research 34 (4):1269–77. doi: 10.1016/S0043-1354(99)00268-7.
  • Costa, M. C, and J. C. Duarte. 2005. Bioremediation of acid mine drainage using acidic soil and organic wastes for promoting sulphate-reducing bacteria activity on a column reactor. Water, Air, and Soil Pollution 165 (1-4):325–45. doi: 10.1007/s11270-005-6914-7.
  • Cravotta, C, and M. Trahan. 1999. Limestone drains to in- ology of acid mine waters. International Geology Review. 42:499–515.
  • Cravotta, C. A. 2007. Passive aerobic treatment of net-alkaline, iron-laden drainage from a flooded underground anthracite mine, Pennsylvania, USA. Mine Water and the Environment 26 (3):128–49. doi: 10.1007/s10230-007-0002-8.
  • Deng, D, and L. S. Lin. 2013. Two-stage combined treatment of acid mine drainage and municipal wastewater. Water Science and Technology: A Journal of the International Association on Water Pollution Research 67 (5):1000–7. doi: 10.2166/wst.2013.653.
  • Diels, L., and K. Vanbroekhoven. 2008. Remediation of metal and metalloid contaminated groundwater. In Methods and techniques for cleaning-up contaminated sites, NATO Science for Peace and Security Series C: Environmental Security, ed. M. D. Annable, M. Teodorescu, P. Hlavinek, and L. Diels, 1–23. Dordrecht: Springer. doi: 10.1007/978-1-4020-6875-1_1.
  • Dvorak, D. H., R. S. Hedin, H. M. Edenborn, and P. E. McIntire. 1992. Treatment of metal‐contaminated water using bacterial sulfate reduction: Results from pilot‐scale reactors. Biotechnology and Bioengineering 40 (5):609–16. doi: 10.1002/bit.260400508.
  • Ehrlich, H. L. 1996. How microbes influence mineral growth and dissolution. Chemical Geology 132 (1-4):5–9. doi: 10.1016/S0009-2541(96)00035-6.
  • Ehrlich, H. L. 1998. Geomicrobiology: Its significance for geology. Earth-Science Reviews 45 (1–2):45–60. doi: 10.1016/S0012-8252(98)00034-8.
  • Ehrlich, H. L., D. K. Newman, and A. Kappler. 2015. Ehrlich’s geomicrobiology. Boca Raton: CRC press.
  • Fründ, C, and Y. Cohen. 1992. Diurnal cycles of sulfate reduction under oxic conditions in cyanobacterial mats. Applied and Environmental Microbiology 58 (1):70–7.
  • Garbisu, C., O. Garaiyurrebaso, L. Epelde, E. Grohmann, and I. Alkorta. 2017. Plasmid-mediated bioaugmentation for the bioremediation of contaminated soils. Frontiers in Microbiology 8(:1966. doi: 10.3389/fmicb.2017.01966.
  • Gibert, O., J. De Pablo, J. L. Cortina, and C. Ayora. 2005. Sorption studies of Zn (II) and Cu (II) onto vegetal compost used on reactive mixtures for in situ treatment of acid mine drainage. Water Research 39 (13):2827–38. doi: 10.1016/j.watres.2005.04.056.
  • Gibert, O., J. de Pablo, J. Luis Cortina, and C. Ayora. 2003. Evaluation of municipal compost/limestone/iron mixtures as filling material for permeable reactive barriers for in‐situ acid mine drainage treatment. Journal of Chemical Technology & Biotechnology 78 (5):489–96. doi: 10.1002/jctb.814.
  • Gilbert, H. J., A. F. Sheehan, K. G. Dueker, and P. Molnar. 2003. Receiver functions in the western United States, with implications for upper mantle structure and dynamics. Journal of Geophysical Research: Solid Earth 108 (B5).
  • Gilmour, C, and G. Riedel. 2009. Biogeochemistry of trace metals and mettaloids.
  • Gleeson, D., F. McDermott, and N. Clipson. 2007. Understanding microbially active biogeochemical environments. Advances in Applied Microbiology 62:81–104.
  • Greben, H. A., J. Baloyi, J. Sigama, and S. N. Venter. 2009. Bioremediation of sulphate rich mine effluents using grass cuttings and rumen fluid microorganisms. Journal of Geochemical Exploration 100 (2-3):163–8. doi: 10.1016/j.gexplo.2008.01.004.
  • Hammack, R. W., D. H. Dvorak, and H. M. Edenborn. 1993. The use of biogenic hydrogen sulfide to selectively recover metals from a severely contaminated mine drainage. In Proceedings of Proceedings of the International Biohydrometallurgy Symposium.
  • Hinchee, R. E., D. C. Downey, and P. K. Aggarwal. 1991. Use of hydrogen peroxide as an oxygen source for in situ biodegradation: Part I. Field studies. Journal of Hazardous Materials 27 (3):287–99. doi: 10.1016/0304-3894(91)80055-S.
  • Huang, X.-D., Y. El-Alawi, D. M. Penrose, B. R. Glick, and B. M. Greenberg. 2004. A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environmental Pollution (Barking, Essex : 1987) 130 (3):465–76. doi: 10.1016/j.envpol.2003.09.031.
  • Hughes, T. A, and N. F. Gray. 2013. Co-treatment of acid mine drainage with municipal wastewater: Performance evaluation. Environmental Science and Pollution Research 20 (11):7863–77. doi: 10.1007/s11356-012-1303-4.
  • Humphries, M. S., T. S. McCarthy, and L. Pillay. 2017. Attenuation of pollution arising from acid mine drainage by a natural wetland on the Witwatersrand. South African Journal of Science ume 113 (Number 1/2):1–9. doi: 10.17159/sajs.2017/20160237.
  • Ibanez, J. G., Hernandez-Esparza, M. Doria-Serrano, C. Fregoso-Infante, A. Singh, and M. M. 2008. Air Oxidation of Metal Ions. In Environmental chemistry: Microscale laboratory experiments, ed. Ibanez, J. G., Hernandez-Esparza, M., Doria-Serrano, C., Fregoso-Infante, A. and Singh, M. M., 89–98. New York, NY: Springer New York. doi: 10.1007/978-0-387-49493-7_7.
  • Jaiyeola, A. T, and J. K. Bwapwa. 2016. Treatment technology for brewery wastewater in a water-scarce country: A review. South African Journal of Science 112 (Number 3/4):1–8. doi: 10.17159/sajs.2016/20150069.
  • Johnson, D. B, and K. B. Hallberg. 2005. Acid mine drainage remediation options: A review. The Science of the Total Environment 338 (1–2):3–14. doi: 10.1016/j.scitotenv.2004.09.002.
  • Jones, A. M., P. J. Griffin, R. N. Collins, and T. D. Waite. 2014. Ferrous iron oxidation under acidic conditions – The effect of ferric oxide surfaces. Geochimica et Cosmochimica Acta 145:1–12. doi: 10.1016/j.gca.2014.09.020.
  • Jørgensen, B. B. 1994. Sulfate reduction and thiosulfate transformations in a cyanobacterial mat during a diel oxygen cycle. FEMS Microbiology Ecology 13 (4):303–12. doi: 10.1016/0168-6496(94)90068-X.
  • Kaksonen, A., M.-L. Riekkola-Vanhanen, and J. Puhakka. 2003. Optimization of metal sulphide precipitation in fluidized-bed treatment of acidic wastewater. Water Research 37 (2):255–66. doi: 10.1016/S0043-1354(02)00267-1.
  • Kashefi, K, and D. R. Lovley. 2000. Reduction of Fe (III), Mn (IV), and toxic metals at 100 C by Pyrobaculum islandicum. Applied and Environmental Microbiology 66 (3):1050–6. doi: 10.1128/AEM.66.3.1050-1056.2000.
  • Krantz-Rülcker, C., B. Allard, and J. Schnürer. 1993. Interactions between a soil fungus, Trichoderma harzianum, and IIb metals—adsorption to mycelium and production of complexing metabolites. Biometals 6 (4):223–30. doi: 10.1007/BF00187759.
  • Krantz-Rülcker, C., B. Allard, and J. Schnürer. 1996. Adsorption of IIB-metals by three common soil fungi—comparison and assessment of importance for metal distribution in natural soil systems. Soil Biology and Biochemistry 28 (7):967–75. doi: 10.1016/0038-0717(95)00169-7.
  • Landa, E. R. 2005. Microbial biogeochemistry of uranium mill tailings. Advances in Applied Microbiology 57:113–30.
  • Ledin, M, and K. Pedersen. 1996. The environmental impact of mine wastes—Roles of microorganisms and their significance in treatment of mine wastes. Earth-Science Reviews 41 (1-2):67–108. doi: 10.1016/0012-8252(96)00016-5.
  • Liu, H., S. Tan, Z. Sheng, T. Yu, and Y. Liu. 2015. Impact of oxygen on the coexistence of nitrification, denitrification, and sulfate reduction in oxygen-based membrane aerated biofilm. Canadian Journal of Microbiology 61 (3):237–42. doi: 10.1139/cjm-2014-0574.
  • Lottermoser, B. 2003. Sulfidic mine wastes. In Mine wastes: Characterization, treatment and environmental impacts, ed. Lottermoser, B., 31–82. Berlin, Heidelberg: Springer Berlin Heidelberg. doi: 10.1007/978-3-662-05133-7_2.
  • Lu, J., T. Chen, J. Wu, P. C. Wilson, X. Hao, and J. Qian. 2011. Acid tolerance of an acid mine drainage bioremediation system based on biological sulfate reduction. Bioresource Technology 102 (22):10401–6. doi: 10.1016/j.biortech.2011.09.046.
  • Luptáková, A., E. Mačingová, I. Kotuličová, and D. Rudzanová. 2016. Sulphates removal from acid mine drainage. In Proceedings of IOP conference series: Earth and environmental science. Prague, Czech Republic, IOP Publishing, 052040.
  • Lyew, D, and J. D. Sheppard. 1997. Effects of physical parameters of a gravel bed on the activity of sulphate‐reducing bacteria in the presence of acid mine drainage. Journal of Chemical Technology & Biotechnology 70 (3):223–30. doi: 10.1002/(SICI)1097-4660(199711)70:3<223::AID-JCTB762>3.0.CO;2-L.
  • Machemer, S. D, and T. R. Wildeman. 1992. Adsorption compared with sulfide precipitation as metal removal processes from acid mine drainage in a constructed wetland. Journal of Contaminant Hydrology 9 (1-2):115–31. doi: 10.1016/0169-7722(92)90054-I.
  • Marchioretto, M. M., H. Bruning, and W. Rulkens. 2005. Heavy metals precipitation in sewage sludge. Separation Science and Technology 40 (16):3393–405. doi: 10.1080/01496390500423748.
  • Martins, M., M. L. Faleiro, G. Silva, S. Chaves, R. Tenreiro, and M. C. Costa. 2011. Dynamics of bacterial community in up-flow anaerobic packed bed system for acid mine drainage treatment using wine wastes as carbon source. International Biodeterioration & Biodegradation 65 (1):78–84. doi: 10.1016/j.ibiod.2010.09.005.
  • McCullough, C. D, and M. A. Lund. 2011. Bioremediation of acidic and metalliferous drainage (AMD) through organic carbon amendment by municipal sewage and green waste. Journal of Environmental Management 92 (10):2419–26. doi: 10.1016/j.jenvman.2011.04.011.
  • Muhammad, S. N., Kusin, F. M. Zahar, M. S. M. Halimoon, N. Yusuf, and F. M. 2015. Passive treatment of acid mine drainage using mixed substrates: Batch experiments. Procedia Environmental Sciences 30:157–61. doi: 10.1016/j.proenv.2015.10.028.
  • Muyzer, G, and A. J. Stams. 2008. The ecology and biotechnology of sulphate-reducing bacteria. Nature Reviews. Microbiology 6 (6):441–54. doi: 10.1038/nrmicro1892.
  • Ňancucheo, I, and D. B. Johnson. 2012. Selective removal of transition metals from acidic mine waters by novel consortia of acidophilic sulfidogenic bacteria. Microbial Biotechnology 5 (1):34–44. doi: 10.1111/j.1751-7915.2011.00285.x.
  • Neculita, C. M., G. J. Zagury, and B. Bussière. 2007. Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria. Journal of Environmental Quality 36 (1):1–16. doi: 10.2134/jeq2006.0066.
  • Nijjer, S., J. Thonstad, and G. M. Haarberg. 2000. Oxidation of manganese(II) and reduction of manganese dioxide in sulphuric acid. Electrochimica Acta 46 (2-3):395–9. doi: 10.1016/S0013-4686(00)00597-1.
  • Osman, K. T. 2014. Physical deterioration of soil. In Soil degradation, conservation and remediation, 45–67. Dordrecht Heidelberg New York London: Springer.
  • Pawlowska, A, and Z. Sadowski. 2019. Bioreduction in the development of new mineral technology. In Proceedings of IOP Conference Series: Materials Science and Engineering, 012031. Bristol, England: IOP Publishing.
  • Peech, M., ALExANDER, L. Dean, L. Reed, and J. F. 1947. Methods of soil analyses for soil fertility investigations. US Department of Agriculture, Circ. N757i 23:3–5.
  • Postgate, J. R. 1984. The sulphate-reducing bacteria, 2nd ed. Cambridge: University Press.
  • Rawlings, D. E. 2005. Characteristics and adaptability of iron-and sulfur-oxidizing microorganisms used for the recovery of metals from minerals and their concentrates. Microbial Cell Factories 4 (1):13–5. doi: 10.1186/1475-2859-4-13.
  • Rawlings, D. E., D. Dew, and C. du Plessis. 2003. Biomineralization of metal-containing ores and concentrates. Trends in Biotechnology 21 (1):38–44. doi: 10.1016/S0167-7799(02)00004-5.
  • Reeder, R. J., M. A. Schoonen, and A. Lanzirotti. 2006. Metal speciation and its role in bioaccessibility and bioavailability. Reviews in Mineralogy and Geochemistry 64 (1):59–113. doi: 10.2138/rmg.2006.64.3.
  • Roberts, D., M. Nachtegaal, and D. L. Sparks. 2005. Speciation of metals in soils. Chemical Processes in Soils 8:619–54.
  • Sanchez-Andrea, I., D. Triana, and J. L. Sanz. 2012. Bioremediation of acid mine drainage coupled with domestic wastewater treatment. Water Science and Technology: A Journal of the International Association on Water Pollution Research 66 (11):2425–31. doi: 10.2166/wst.2012.477.
  • Silva, A. M., E. C. Cunha, F. D. R. Silva, and V. A. Leão. 2012. Treatment of high-manganese mine water with limestone and sodium carbonate. Journal of Cleaner Production 29-30:11–9. doi: 10.1016/j.jclepro.2012.01.032.
  • Skousen, J., C. E. Zipper, A. Rose, P. F. Ziemkiewicz, R. Nairn, L. M. McDonald, and R. L. Kleinmann. 2017. Review of passive systems for acid mine drainage treatment. Mine Water and the Environment 36 (1):133–53. doi: 10.1007/s10230-016-0417-1.
  • Song, Y., M. Fitch, J. Burken, L. Nass, S. Chilukiri, N. Gale, and C. Ross. 2001. Lead and zinc removal by laboratory‐scale constructed wetlands. Water Environment Research: A Research Publication of the Water Environment Federation 73 (1):37–44. doi: 10.2175/106143001x138660.
  • Strosnider, W. H. J., B. K. Winfrey, R. A. M. Peer, and R. W. Nairn. 2013. Passive co-treatment of acid mine drainage and sewage: Anaerobic incubation reveals a regeneration technique and further treatment possibilities. Ecological Engineering 61:268–73. doi: 10.1016/j.ecoleng.2013.09.037.
  • Stumm, W, and J. Morgan. 1996. Metal ions in aqueous solution: aspects of coordination chemistry. In Aquatic chemistry: Chemical equilibria and rates in natural waters, 252–348. New York, NY: John Wiley & Sons, Inc.
  • Thomé, A., C. Reginatto, I. Cecchin, and L. M. Colla. 2014. Bioventing in a residual clayey soil contaminated with a blend of biodiesel and diesel oil. Journal of Environmental Engineering 140 (11):06014005. doi: 10.1061/(ASCE)EE.1943-7870.0000863.
  • Vadapalli, V. R. K., J. N. Zvimba, M. Mathye, H. Fischer, and L. Bologo. 2015. Acid mine drainage neutralization in a pilot sequencing batch reactor using limestone from a paper and pulp industry. Environmental Technology 36 (19):2515–23. doi: 10.1080/09593330.2015.1036786.
  • van den Berg, M., M. Botes, E. Slabbert, and T. Cloete. 2016. Evaluating sulphate removal and identifying the bacterial community present in acid mine drainage treated with synthetic domestic wastewater sludge. Water SA 42 (3):475–82. doi: 10.4314/wsa.v42i3.13.
  • Violante, A., J. Zhu, M. Pigna, A. Jara, V. Cozzolino, and M. Mora. 2013. Role of biomolecules in influencing transformation mechanisms of metals and metalloids in soil environments. In Molecular environmental soil science, ed. J. Xu and D. L. Sparks, 167–91. Dordrecht: Springer.
  • Walker, D. 1972. Soil sulfate I. Extraction and measurement. Canadian Journal of Soil Science 52 (2):253–60. doi: 10.4141/cjss72-031.
  • Warren, L. A, and E. A. Haack. 2001. Biogeochemical controls on metal behaviour in freshwater environments. Earth-Science Reviews 54 (4):261–320. doi: 10.1016/S0012-8252(01)00032-0.
  • Willow, M. A, and R. R. Cohen. 2003. pH, dissolved oxygen, and adsorption effects on metal removal in anaerobic bioreactors. Journal of Environmental Quality 32 (4):1212–21. doi: 10.2134/jeq2003.1212.
  • Zachara, J., C. Cowan, and C. Resch. 1991. Sorption of divalent metals on calcite. Geochimica et Cosmochimica Acta 55 (6):1549–62. doi: 10.1016/0016-7037(91)90127-Q.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.