577
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A Machine Learning Approach for Physical Activity Recognition in Cystic Fibrosis

, ORCID Icon, , , , , & ORCID Icon show all

References

  • Ahmadi, M., O’Neil, M., Fragala-Pinkham, M., Lennon, N., & Trost, S. G. (2018). Machine learning algorithms for activity recognition in ambulant children and adolescents with cerebral palsy. Journal of Neuroengineering and Rehabilitation, 15(1), 1–9. https://doi.org/10.1186/s12984-018-0456-x
  • Ahmadi, M. N., Pfeiffer, K. A., & Trost, S. G. (2020). Physical activity classification in youth using raw accelerometer data from the hip. Measurement in Physical Education and Exercise Science, 24(2), 129–136. https://doi.org/10.1080/1091367X.2020.1716768
  • Bassett, D. R., Jr., Rowlands, A., & Trost, S. G. (2012). Calibration and validation of wearable monitors. Medicine & Science in Sports & Exercise, 44(1 Suppl 1), S32–38. https://doi.org/10.1249/MSS.0b013e3182399cf7
  • Bianchim, M. S., McNarry, M. A., Barker, A. R., Williams, C. A., Denford, S., Holland, A. E., Cox, N. S., Dreger, J., Evans, R., Thia, L., & Mackintosh, K. A. (2022). Sleep, sedentary time and physical activity levels in children with Cystic Fibrosis. International Journal of Environmental Research and Public Health, 19(12), 7133. https://doi.org/10.3390/ijerph19127133
  • Bianchim, M. S., McNarry, M. A., Evans, R., Thia, L., Barker, A. R., Williams, C. A., Denford, S., & Mackintosh, K. A. (2023). Calibration and cross-validation of accelerometry in children and adolescents with Cystic Fibrosis. Measurement in Physical Education and Exercise Science, 27(1), 51–59. https://doi.org/10.1080/1091367X.2022.2065919
  • Butte, N. F., Watson, K. B., Ridley, K., Zakeri, I. F., McMurray, R. G., Pfeiffer, K. A., Crouter, S. E., Herrmann, S. D., Bassett, D. R., Long, A., Berhane, Z., Trost, S. G., Ainsworth, B. E., Berrigan, D., & Fulton, J. E. (2018). A youth compendium of physical activities: Activity codes and metabolic intensities. Medicine & Science in Sports & Exercise, 50(2), 246–256. https://doi.org/10.1249/mss.0000000000001430
  • Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. KDD ’16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785–794. https://doi.org/10.1145/2939672.2939785
  • Clevenger, K. A., Pfeiffer, K. A., & Montoye, A. H. K. (2020). Cross-generational comparability of raw and count-based metrics from ActiGraph GT9X and wGt3X-BT accelerometers during free-living in youth. Measurement in Physical Education and Exercise Science, 24(3), 194–204. https://doi.org/10.1080/1091367X.2020.1773827
  • Cooper, J. A., Watras, A. C., O’Brien, M. J., Luke, A., Dobratz, J. R., Earthman, C. P., & Schoeller, D. A. (2009). Assessing validity and reliability of resting metabolic rate in six gas analysis systems. Journal of the American Dietetic Association, 109(1), 128–132. https://doi.org/10.1016/j.jada.2008.10.004
  • Davies, J. C., & Alton, E. W. (2009). Monitoring respiratory disease severity in Cystic Fibrosis. Respiratory Care, 54(5), 606–617. https://doi.org/10.4187/aarc0493
  • de Onis, M., Onyango, A. W., Van den Broeck, J., Chumlea, W. C., & Martorell, R. (2004). Measurement and standardization protocols for anthropometry used in the construction of a new international growth reference. Food and Nutrition Bulletin, 25(1 Suppl), S27–S36. https://doi.org/10.1177/15648265040251S104
  • de Vries, S. I., Engels, M., & Garre, F. G. (2011). Identification of children’s activity type with accelerometer-based neural networks. Medicine & Science in Sports & Exercise, 43(10), 1994–1999. https://doi.org/10.1249/MSS.0b013e318219d939
  • Erickson, M. L., Seigler, N., McKie, K. T., McCully, K. K., & Harris, R. A. (2015). Skeletal muscle oxidative capacity in patients with cystic fibrosis. Experimental Physiology, 100(5), 545–552. https://doi.org/10.1113/ep085037
  • Fairclough, S. J., Noonan, R., Rowlands, A. V., Van Hees, V., Knowles, Z., & Boddy, L. M. (2016). Wear compliance and activity in children wearing wrist- and hip-mounted accelerometers. Medicine and Science in Sports and Exercise, 48(2), 245–253. https://doi.org/10.1249/MSS.0000000000000771
  • Filanowski, P. M., Slade, E., Iannotti, R. J., Camhi, S. M., & Milliken, L. A. (2022). The impact of ActiGraph’s low-frequency extension filter on measurement of children’s physical activity. Journal of Sports Sciences, 40(12), 1406–1411. https://doi.org/10.1080/02640414.2022.2081404
  • Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232. https://doi.org/10.1214/aos/1013203451
  • González, K., Fuentes, J., & Márquez, J. L. (2017). Physical inactivity, sedentary behavior and chronic diseases. Korean Journal of Family Medicine, 38(3), 111–115. https://doi.org/10.4082/kjfm.2017.38.3.111
  • Graham, B. L., Steenbruggen, I., Miller, M. R., Barjaktarevic, I. Z., Cooper, B. G., Hall, G. L., Hallstrand, T. S., Kaminsky, D. A., McCarthy, K., McCormack, M. C., & Oropez, C. E. (2019). Standardization of spirometry 2019 update. An official American thoracic society and European respiratory society technical statement. American Journal of Respiratory and Critial Care, 200(8), e70–e88. https://doi.org/10.1164/rccm.201908-1590ST
  • Hebestreit, H., Schmid, K., Kieser, S., Junge, S., Ballmann, M., Roth, K. … Kriemler, S. (2014). Quality of life is associated with physical activity and fitness in cystic fibrosis. BMC Pulmonary Medicine, 14(1), 26. https://doi.org/10.1186/1471-2466-14-26
  • Hurter, L., Fairclough, S. J., Knowles, Z. R., Porcellato, L. A., Cooper-Ryan, A. M., & Boddy, L. M. (2018). Establishing raw acceleration thresholds to classify sedentary and stationary behaviour in children. Children (Basel, Switzerland), 5(12), 172. https://doi.org/10.3390/children5120172
  • Johnson, M. R., Ferkol, T. W., & Shepherd, R. W. (2006). Energy cost of activity and exercise in children and adolescents with cystic fibrosis. Journal of Cystic Fibrosis: Official Journal of the European Cystic Fibrosis Society, 5(1), 53–58. https://doi.org/10.1016/j.jcf.2005.10.001
  • Karas, M., Muschelli, J., Leroux, A., Urbanek, J. K., Wanigatunga, A. A., Bai, J., Crainiceanu, C. M., & Schrack, J. A. (2022). Comparison of accelerometry-based measures of physical activity: Retrospective observational data analysis study. JMIR MHealth and UHealth, 10(7), e38077. https://doi.org/10.2196/38077
  • Kühnhausen, J., Dirk, J., & Schmiedek, F. (2017). Individual classification of elementary school children’s physical activity: A time-efficient, group-based approach to reference measurements. Behavior Research Methods, 49(2), 685–697. https://doi.org/10.3758/s13428-016-0724-2
  • Kuhn, L., Page, K., Ward, J., & Worral-Carter, L. (2013). The process and utility of classification and regression tree methodology in nursing research. Journal of Advanced Nursin, 70(6), 1276–1286. https://doi.org/10.1111/jan.12288
  • Little, M. A., Varoquaux, G., Saeb, S., Lonini, L., Jayaraman, A., Mohr, D. C., & Kording, K. P. (2017). Using and understanding cross-validation strategies. Perspectives on saeb et al. GigaScience, 6(5), 1–6. https://doi.org/10.1093/gigascience/gix020
  • Mackintosh, K. A., Montoye, A. H. K., Pfeiffer, K. A., & McNarry, M. A. (2016). Investigating optimal accelerometer placement for energy expenditure prediction in children using a machine learning approach - IOPscience. https://doi.org/10.1088/0967-3334/37/10/1728
  • Matthews, C. E., Hagströmer, M., Pober, D. M., & Bowles, H. R. (2012). Best practices for using physical activity monitors in population-based research. Medicine and Science in Sports and Exercise, 44(1 Suppl 1), S68–S76. https://doi.org/10.1249/MSS.0b013e3182399e5b
  • McMurray, R. G., Butte, N. F., Crouter, S. E., Trost, S. G., Pfeiffer, K. A., Bassett, D. R., Puyau, M. R., Berrigan, D., Watson, K. B., Fulton, J. E., & Lof, M. (2015). Exploring metrics to express energy expenditure of physical activity in youth. PLoS ONE, 10(6), e0130869. https://doi.org/10.1371/journal.pone.0130869
  • Migueles, J. H., Cadenas-Sanchez, C., Alcantara, J. M. A., Leal-Martín, J., Mañas, A., Ara, I., Glynn, N. W., & Shiroma, E. J. (2021). Calibration and cross-validation of accelerometer cut-points to classify sedentary time and physical activity from hip and non-dominant and dominant wrists in older adults. Sensors, 21(10), 3326. MDPI AG Retrieved from. https://doi.org/10.3390/s21103326
  • Migueles, J. H., Rowlands, A. V., Huber, F., Sabia, S., & van Hees, V. T. (2019). GGIR: A research community–driven open source R package for generating physical activity and sleep outcomes from multi-day raw accelerometer data in. Journal for the Measurement of Physical Behaviour, 2(3), 188–196. https://doi.org/10.1123/jmpb.2018-0063
  • Mirwald, R. L., Baxter-Jones, A. D., Bailey, D. A., & Beunen, G. P. (2002). An assessment of maturity from anthropometric measurements. Medicine and Science in Sports and Exercise, 34(4), 689–694. https://doi.org/10.1097/00005768-200204000-00020
  • Montoye, A. H. K., Clevenger, K. A., Mackintosh, K. A., McNarry, M. A., & Pfeiffer, K. A. (2019). Cross-validation and comparison of energy expenditure prediction models using count-based and raw accelerometer data in youth. Journal for the Measurement of Physical Behaviour, 2(4), 237–246. https://doi.org/10.1123/jmpb.2018-0011
  • Montoye, A. H. K., Westgate, B. S., Fonley, M. R., & Pfeiffer, K. A. (2018). Cross-validation and out-of-sample testing of physical activity intensity predictions with a wrist-worn accelerometer. Journal of Applied Physiology (Bethesda, Md.: 1985), (5), 1284–1293. https://doi.org/10.1152/japplphysiol.00760.2017
  • Moore, V. C. (2012). Spirometry: Step by step. Breathe, 8(3), 232–240. https://doi.org/10.1183/20734735.0021711
  • Patrick, E. A., & Fischer, F. P. (1970). A generalized k-nearest neighbor rule information and control. Information & Control, 16(2), 128–152. https://doi.org/10.1016/S0019-9958(70)90081-1
  • Pfeiffer, K. A., Lisee, C., Westgate, B. S., Kalfsbeek, C., Kuenze, C., Bell, D., Cadmus-Bertram, L., & Montoye, A. H. (2023). Using accelerometers to detect activity type in a sport setting: Challenges with using multiple types of conventional machine learning approaches. Measurement in Physical Education and Exercise Science, 27(1), 60–72. https://doi.org/10.1080/1091367X.2022.2069467
  • Quanjer, P. Q., Sanja, S., Tim, J. C., Xaver, B., Graham, L. H., & Bruce, H. C. (2012). Multi-ethnic reference values for spirometry for the 3–95-yr age range: The global lung function 2012 equations. https://doi.org/10.1183/09031936.00080312
  • Rahman, S., Irfan, M., Raza, M., Moyeezullah Ghori, K., Yaqoob, S., & Awais, M. (2020). Performance analysis of boosting classifiers in recognizing activities of daily living. International Journal of Environmental Research and Public Health, 17(3), 1082. https://doi.org/10.3390/ijerph17031082
  • Rand, S., & Prasad, S. A. (2012). Exercise as part of a cystic fibrosis therapeutic routine. Expert Review of Respiratory Medicine, 6(3), 341–352. https://doi.org/10.1586/ers.12.19
  • Ruch, N., Rumo, M., & Mader, U. (2011). Recognition of activities in children by two uniaxial accelerometers in free-living conditions. European Journal of Applied Physiology, 111(8), 1917–1927. https://doi.org/10.1007/s00421-011-1828-0
  • Stephens, S., Takken, T., Esliger, D. W., Pullenayegum, E., Beyene, J., Tremblay, M., Schneiderman, J., Biggar, D., Longmuir, P., McCrindle, B., & Abad, A. (2016). Validation of accelerometer prediction equations in children with chronic disease. Pediatric Exercise Science, 28(1), 117–132. https://doi.org/10.1123/pes.2014-0185
  • Tjurin, P., Niemelä, M., Kangas, M., Vähä-Ypyä, H., Sievänen, H., Jämsä, T., & Korpelainen, R. (2019). Accelerometry-based characteristics of overall sedentary behavior and sitting in middle-aged adults. Measurement in Physical Education and Exercise Science, 23(3), 249–257. https://doi.org/10.1080/1091367X.2019.1613997
  • Tomezsko, J. L., Stallings, V. A., Kawchak, D. A., Goin, J. E., Diamond, G., & Scanlin, T. F. (1994). Energy expenditure and genotype of children with cystic fibrosis. Pediatric Research, 35(4), 451–460. https://doi.org/10.1203/00006450-199404000-00013
  • Trost, S. G., Cliff, D. P., Ahmadi, M. N., Tuc, N. V., & Hagenbuchner, M. (2018). Sensor-enabled activity class recognition in preschoolers: Hip versus wrist data. Medicine & Science in Sports & Exercise, 50(3), 634–641. https://doi.org/10.1249/mss.0000000000001460
  • Trost, S. G., Wong, W. K., Pfeiffer, K. A., & Zheng, Y. (2012). Artificial neural networks to predict activity type and energy expenditure in youth. Medicine & Science in Sports & Exercise, 44(9), 1801–1809. https://doi.org/10.1249/MSS.0b013e318258ac11
  • Trost, S. G., Zheng, Y., & Wong, W. (2014). Machine learning for activity recognition: Hip versus wrist data. Institute of Physics and Engineering in Medici, 35(11), 2183–2189. https://doi.org/10.1088/0967-3334/35/11/2183
  • Trust, C. F. (2018). UK cystic fibrosis registry 2018 annual data report. https://www.cysticfibrosis.org.uk/sites/default/files/2020-12/2018%20Registry%20Annual%20Data%20Report.pdf
  • Vähä-Ypyä, H., Vasankari, T., Husu, P., Suni, J., Sievänen, & Sievänen, H. (2015). A universal, accurate intensity-based classification of different physical activities using raw data of accelerometer. Clinical Physiology and Functional Imaging, 35(1), 64–70. https://doi.org/10.1111/cpf.12127
  • van de Weert van Leeuwen, P., Arets, H. G. M., van der Ent, C. K., & Beekman, J. M. (2013). Infection, inflammation and exercise in cystic fibrosis. Respiratory Research, 14(1), 1–10.
  • Weir, J. B. (1949). New methods for calculating metabolic rate with special reference to protein metabolism. Journal of Physiology, Paris, 109(1–2), https://doi.org/10.1113/jphysiol.1949.sp004363
  • Winham, S. J., Freimuth, R. R., & Biernacka, J. M. (2013). A weighted random forests approach to improve predictive performance. Statistical Analysis and Data Mining, 6(6), 496–505. https://doi.org/10.1002/sam.11196
  • Zalewski, P., Marchegiani, L., Elsts, A., Piechocki, R., Craddock, I., & Fafoutis, X. (2020 6). From bits of data to bits of knowledge—an on-board classification framework for wearable sensing systems. Sensors (Basel), 20(6), 1655. https://doi.org/10.3390/s20061655
  • Zertuche, L. (2014). Human activity recognition from accelerometer data. Fellowship AI.
  • Zhang, Z. (2016). Introduction to machine learning: K-nearest neighbors. Ann Transl Med, 4(11), 218–218. https://doi.org/10.21037/atm.2016.03.37