91
Views
0
CrossRef citations to date
0
Altmetric
Petroleum Transportation

A station location-allocation optimization problem in star-star pipeline network layout

ORCID Icon, , &

References

  • Adasme, P. 2018. P-median based formulations with backbone facility locations. Applied Soft Computing 67:261–75. doi:10.1016/j.asoc.2018.03.008.
  • Dbouk, H. M., K. Ghorayeb, H. Kassem, H. Hayek, R. Torrens, and O. Wells. 2021. Facility placement layout optimization. Journal of Petroleum Science and Engineering 207:109079. doi:10.1016/j.petrol.2021.109079.
  • Dbouk, H. M., H. Hayek, and K. Ghorayeb. 2021. Modular approach for optimal pipeline layout. Journal of Petroleum Science and Engineering 197 (8):107934. doi:10.1016/j.petrol.2020.107934.
  • Duan, X. N., W. Q. He, Y. B. Wang, Q. C. Liu, Y. F. Tian, and X. W. Shi. 2022. Optimization design method of a large-scale multilevel gravity drip irrigation pipe network system based on atom search optimization. Journal of Irrigation and Drainage Engineering 148 (7):04022023. doi:10.1061/(ASCE)IR.1943-4774.0001690.
  • He, G. X., Y. S. Li, M. H. Lin, K. X. Liao, and Y. T. Liang. 2019. Optimization of gathering and transmission pipe network layout in gas field and pipeline route in 3D terrain. Journal of Pipeline Systems Engineering and Practice 10 (2):04019009. doi:10.1061/(ASCE)PS.1949-1204.0000374.
  • He, G. X., Y. T. Liang, L. M. Fang, Y. H. Ren, and Q. Xiao. 2016. Layout optimization of gathering systems in CBM fields considering three dimensional terrains and obstacles. Oil & Gas Storage and Transportation 35 (6):638–47.
  • Hong, B., X. Li, G. Di, Y. Li, X. Liu, S. Chen, and J. Gong. 2019. An integrated MILP method for gathering pipeline networks considering hydraulic characteristics. Chemical Engineering Research and Design 152:320–35. doi:10.1016/j.cherd.2019.08.013.
  • Hong, B., X. Li, G. Di, S. Song, W. Yu, S. Chen, Y. Li, and J. Gong. 2020. An integrated MILP model for optimal planning of multi-period onshore gas field gathering pipeline system. Computers & Industrial Engineering 146:106479. doi:10.1016/j.cie.2020.106479.
  • Humpola, J, and A. Fügenschuh. 2015. Convex reformulations for solving a nonlinear network design problem. Computational Optimization and Applications 62 (3):717–59. doi:10.1007/s10589-015-9756-2.
  • Mnasri, H., M. A. Franchek, T. Wassar, Y. J. Tang, and A. Meziou. 2022. Model-based simulation approach for pre-front end engineering design studies for subsea field architecture development. SPE Production & Operations 37 (01):33–53. doi:10.2118/205508-PA.
  • Robinius, M., L. Schewe, M. Schmidt, D. Stolten, J. Thurauf, and L. Welder. 2019. Robust optimal discrete arc sizing for tree-shaped potential networks. Computational Optimization and Applications 73 (3):791–819. doi:10.1007/s10589-019-00085-x.
  • Rosa, V. R., E. Camponogara, and V. J. M. Ferreira. 2018. Design optimization of oilfield subsea infrastructures with manifold placement and pipeline layout. Computers & Chemical Engineering 108:163–78. doi:10.1016/j.compchemeng.2017.08.009.
  • Sanaye, S, and J. Mahmoudimehr. 2012. Minimization of fuel consumption in cyclic and non-cyclic natural gas transmission networks: Assessment of genetic algorithm optimization method as an alternative to non-sequential dynamic programing. Journal of the Taiwan Institute of Chemical Engineers 43 (6):904–17. doi:10.1016/j.jtice.2012.04.010.
  • Wei, L. X., H. Dong, J. Zhao, and G. Zhou. 2016. Optimization model establishment and optimization software development of gas field gathering and transmission pipeline network system. Journal of Intelligent & Fuzzy Systems 31 (4):2375–82. doi:10.3233/JIFS-169078.
  • Wang, B., M. Yuan, H. Zhang, W. Zhao, and Y. Liang. 2018. An MILP model for optimal design of multi-period natural gas transmission network. Chemical Engineering Research and Design 129:122–31. doi:10.1016/j.cherd.2017.11.001.
  • Zhang, H. R., Y. T. Liang, J. Ma, C. Qian, and X. H. Yan. 2017. An MILP method for optimal offshore oilfield gathering system. Ocean Engineering 141:25–34. doi:10.1016/j.oceaneng.2017.06.011.
  • Zhang, H. R., Y. T. Liang, W. Zhang, B. H. Wang, X. H. Yan, and Q. Liao. 2017. A unified MILP model for topological structure of production well gathering pipeline network. Journal of Petroleum Science and Engineering 152:284–93. doi:10.1016/j.petrol.2017.03.016.
  • Zhou, J., T. T. Fu, Y. L. Chen, Y. Xiao, J. H. Peng, and G. C. Liang. 2021. A mixed integer nonlinear programming model for optimal design of natural gas storage surface double-pipe network. Journal of Energy Storage 44:103379. doi:10.1016/j.est.2021.103379.
  • Zhou, J., G. C. Liang, T. Deng, and S. W. Zhou. 2017. Optimization design of coalbed methane pipeline network–coupled wellbore/reservoir simulation. Advances in Mechanical Engineering 9 (6):168781401770890–22. doi:10.1177/1687814017708905.
  • Zhou, J., G. C. Liang, and T. Deng. 2018. Optimal design of star-tree oil-gas pipeline network in discrete space. Journal of Pipeline Systems Engineering and Practice 9 (1):04017034. doi:10.1061/(ASCE)PS.1949-1204.0000302.
  • Zhou, J., J. H. Peng, G. C. Liang, and T. Deng. 2019. Layout optimization of tree-tree gas pipeline network. Journal of Petroleum Science and Engineering 173:666–80. doi:10.1016/j.petrol.2018.10.067.
  • Zhou, J., L. L. Zhou, G. C. Liang, S. B. Wang, T. T. Fu, X. Zhou, and J. H. Peng. 2020. Optimal design of the gas storage surface pipeline system with injection and withdrawal conditions. Petroleum 7 (1):102–16. doi:10.1016/j.petlm.2020.05.003.
  • Zhou, J., X. Zhou, G. C. Liang, and J. H. Peng. 2020b. An MINLP model for network layout of underground natural gas storage. Journal of Intelligent & Fuzzy Systems 38 (4):4619–42. doi:10.3233/JIFS-191383.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.