32
Views
0
CrossRef citations to date
0
Altmetric
Petroleum Processing

A comparative assessment of performance behavior of mineral-based engine oils containing metal oxide nano-particles

ORCID Icon, ORCID Icon &

References

  • Agoston, A., B. Jakoby, C. Otsch, and J. Zhuravleva. 2004. An IR-absorption sensor system for the determination of engine oil deterioration. Proceeding of IEEE, Sensors, Vienna, Austria, Otc 1:463–6.
  • Ahmad, N. A., K. M. Abdelbary, and S. M. Younis. 2018. Chemical analysis of engine oil as an indicator to estimate the rate of wear. Egyptian Journal of Chemistry 61 (4):581–90.
  • Ali, M.K.A., and H. Xianjun. 2020. Improving the heat transfer capability and thermal stability of vehicle engine oils using Al2O3/TiO2 nanomaterials. Powder Technology 363, 48–58.
  • Anil, P. M., A. Patra, J. Thangaraja, O. D. Samuel, and M. M. Abbas. 2021. Assessment of tribological characteristic of low sulfur and ultra-low sulfur diesel under practical load and temperature scenarios. SAE International Journal of Engines 15 (1):15–29. doi:10.4271/03-15-01-0002.
  • Balasubramanian, D, and K. R. Lawrence. 2019. Influence on the effect of TiO2 nano-particles as an additive with Mimusops elengi methyl ester in a CI engine. Environmental Science and Pollution Research 26 (16):16493–502. doi:10.1007/s11356-019-04826-7.
  • Besser, C., A. Agocs, B. Ronai, A. Ristic, M. Repka, E. Jankes, C. McAleese, and N. Dörr. 2019. Generation of engine oils with defined degree of degradation by means of a large scale artificial alteration method. Tribology International 132:39–49. doi:10.1016/j.triboint.2018.12.003.
  • Cecilia, J. A., D. Ballesteros Plata, R. M. Alves Saboya, F. M. Tavares de Luna, C. L. Cavalcante, and E. Rodríguez-Castellón. 2020. An overview of the biolubricant production process: Challenges and future perspectives. Processes 8 (3):257. doi:10.3390/pr8030257.
  • Chun, S. M. 2011. Simulation of engine life time related with abnormal oil consumption. Tribology International 44 (4):426–36. doi:10.1016/j.triboint.2010.11.020.
  • CIMAC. 2011. The used engine oil analysis-user interpretation guideline. CIMAC-The International Council on Combustion Engines, Marine Lubricants 201:1–41.
  • De Rivas, B. L., J.-L. Vivancos, J. Ordieres-Meré, and S. F. Capuz-Rizo. 2017. Determination of the total acid number (TAN) of used mineral oils in aviation engines by FTIR using regression models. Chemometrics and Intelligent Laborary Systems 160:32–9. doi:10.1016/j.chemolab.2016.10.015.
  • Diaby, M., A. Le Negrate, J. Bocquet, M. Sablier, and M. El Fassi. 2009. Understanding carbonaceous deposit formation resulting from engine oil degradation. Carbon 47 (2):355–66. doi:10.1016/j.carbon.2008.10.014.
  • Dorr, N., A. Agocs, A. Ristic, C. Besser, and M. Frauscher. 2019. Engine Oils in the field: A comprehensive chemical assessment of engine oil degradation in a passenger car. Tribology Letters 67-68:1–21.
  • Elumalai, P. V., D. Balasubramanian, M. Parthasarathy, A. R. Pradeepkumar, S. Mohamed Iqbal, J. Jayakar, and M. Nambiraj. 2020. An experimental study on harmful pollution reduction technique in low heat rejection engine fuelled with blends of pre-heated linseed oil and nano additive. Journal of Cleaner Production 283:124617. doi:10.1016/j.jclepro.2020.124617.
  • Elumalai, P. V., R. Krishna Moorthy, M. Parthasarathy, O. D. Samuel, H. I. Owamah, C. A. Saleel, C. C. Enweremadu, M. Sreenivasa Reddy, and A. Afzal. 2022. Artificial neural networks model for predicting the behaviour of different injection pressure characteristics powered by blend of biofuel-nano emulsion. Energy Science & Engineering 10 (7):2367–96. doi:10.1002/ese3.1144.
  • Evans, J. S. 1997. Wear limits verse trends. Wear Check: Technical Bulletin 15:1–8.
  • Golebiowski, W., A. Wolak, and G. Zajac. 2019. The influence on the physical and chemical properties of concentration of trace elements in used engine oils. Petroleum Science and Technology ISSN: 1091-6466, 37(7):1532–2459. 1–11.
  • He, Q., C. Yao, G. Chen, and X. Chen. 2009. Application of oil analysis to the condition monitoring of large engineering machinery. IEEE 8th Conference on ICRMS.
  • Joseph, H. M, and N. Poornima. 2019. Synthesis and characterization of ZnO nano-particles. Material Today: Proceedings 9 (1):7–12.
  • Kral, J. J., B. Konecny, G. Fedorko, and V. Molnar. 2014. Degradation and chemical change of long-life oils following intensive use in automobile engines. Measurement 50 (1):34–42.
  • Kral, J., B. Konecny, J. Kral, K. Madac, G. Fedorko, and V. Molnar. 2014. Degradation and chemical change of long life oils followings intensive use in automotive engines. Measurement 50:34–42. doi:10.1016/j.measurement.2013.12.034.
  • Kumar, S., N. M. Mishra, and P. S. Mukherjee. 2005. Additives depletion and engine oil condition – a case study. Industrial Lubrication and Tribology 57 (2):69–72. doi:10.1108/00368790510583375.
  • Kumar, A., G. D. Thakre, P. K. Arya, and A. K. Jain. 2017. Influence of operating parameters on tribological performance of oleic acid functionalized Cu nano-fluids. Industrial & Engineering Chemistry Research 56 (13):3527–41. doi:10.1021/acs.iecr.6b04375.
  • Kumbár, V., J. Glos, and J. Votava. 2014. Monitoring of chemical elements during lifetime of engine oil. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis 62 (1):155–9. doi:10.11118/actaun201462010155.
  • Lakshminarayanan, P. A., and N. S. Nayak. 2011. Critical component wear in heavy duty engines. Singapore: John Wiley & Sons. doi:10.1002/9780470828847.
  • Macian, V., B. Tormos, G. Miró, S. Ruiz, and T. Pérez. 2014. Evaluation of low viscosity engine wear effects and oil performance in heavy duty engines fleet test. SAE technical paper, no. 2014–01–2797.
  • Macián, V., B. Tormos, J. M. Salavert, and Y. A. Gómez. 2012. Proposal of an FTIR methodology to monitor oxidation level in used engine oils: Effects of thermal degradation and fuel dilution. Tribology Transactions 55 (6):872–82. doi:10.1080/10402004.2012.721921.
  • Myshkin, N. K., L. V. Markova, M. S. Semenyuk, H. Kong, H.-G. Han, and E.-S. Yoon. 2003. Wear monitoring based on the analysis of lubricant contamination by optical ferroanalyzer. Wear 255 (7-12):1270–5. doi:10.1016/S0043-1648(03)00175-3.
  • Nagy, A. L., I. Zsoldos, and J. C. Knaups. 2019. Investigation of used engine oil lubricating performance though oil analysis and friction and wear measurement. Acta Technica Jaurinensis 13 (3):237–51.
  • Rivas, B. L. D., S. F. C. Rizo, J. L. Vivancos, and J. O. Mere. 2016. Determination of total acid number of used mineral oils in aviation engine by FTIR using regression models. Chemometrics and Intelligent Laborary Systems 160:1–24.
  • Salehi, F. M., A. Morina, and A. Neville A. 2017. The effect of soot and diesel contamination on wear and friction of engine oil pump. Tribology International 115:285–96. doi:10.1016/j.triboint.2017.05.041.
  • Samuel, O. D, and M. Gulum. 2018. Mechanical and corrosion properties of brass exposed to waste sunflower oil biodiesel-diesel fuel blends. Chemical Engineering Communications 206 (5):682–94. doi:10.1080/00986445.2018.1519508.
  • Samuel, O. D., M. A. Waheed, A. T. Garavand, T. N. Verma, O. U. Dairo, B. O. Bolaji, and A. Afzal. 2021. Prandtl number of optimum biodiesel from food industrial waste oil and diesel fuel blend for diesel engine. Fuel 285:119049. doi:10.1016/j.fuel.2020.119049.
  • Sejkorová, M., I. Hurtová, P. Jilek, M. Novák, and O. Voltr. 2021. Study of the effect of physicochemical degradation and contamination of motor oils on their lubricity. Coatings 11 (1):60. doi:10.3390/coatings11010060.
  • Shah, R., M. Woydt, and S. Zhang. 2021. The economic and environmental significance of sustainable lubricants. Lubricants 9 (2):21–11. doi:10.3390/lubricants9020021.
  • Sharma, P. K., V. Srinivas, V. D. Rao, and A. K. Kumar. 2011. Experimental study and analysis of lubricants dispersed with nano Cu and TiO2 in a four-stroke two wheeler. Nanoscale Research Letters 6, 233.
  • Shinde, H. M, and A. K. Bewoor. 2020. Evaluating petrol engine oil deterioration through oxidation and nitration parameters by low cost IR sensor. Applied Petrochemical Research 10 (2):83–94. doi:10.1007/s13203-020-00248-6.
  • Singh, T. S., U. Rajak, O. D. Samuel, P. K. Chaurasiya, K. Natarajan, T. N. Verma, and P. Nashine. 2021. Optimization of performance and emission parameter of direct injection diesel engine fuelled with Microalgas spirulina (L.)- Response surface methodology and full factorial method approach. Fuel 285:119103. doi:10.1016/j.fuel.2020.119103.
  • Thangavelu, S. K., C. Piraiarasi, A. S. Ahmed, and F. N. Ani. 2015. Corrosion behavior of copper in biodieseldiesel-bioethanol (BDE). Advanced Materials Research 1098:44–50. doi:10.4028/www.scientific.net/AMR.1098.44.
  • Wang, S. 2002. Engine oil condition sensor: Method for establishing correlation with total acid number. Sensors and Actuators B: Chemical 86 (2-3):122–6. doi:10.1016/S0925-4005(02)00155-7.
  • Wolak, A. 2018. Changes in lubricant properties of used synthetic oils based on the total acid number. Measurement and Control 51 (3-4):65–72. doi:10.1177/0020294018770916.
  • Wolak, A. 2018. TBN performance study on a test fleet in real-world driving conditions using present-day engine oils. Measurement 114:322–31. doi:10.1016/j.measurement.2017.09.044.
  • Wooton, D. 2007. The Lubricant’s Nemesis—oxidation. Practical Oil Analytics 9:5–6.
  • Yang, Z., B. T. Jones, and X. Hou. 2003. Determination of wear metals in engine oil by mild acid digestion and energy dispersive X-ray fluorescence spectrometry using solid phase extraction disks. Talanta 59 (4):673–80. doi:10.1016/S0039-9140(02)00580-5.
  • Yunus, S., A. A. Rashid, S. A. Latip, N. R. Abdullah, M. A. Ahmad, and A. H. Abdullah. 2013. Comparative study of used and unused engine oil Based on property analysis basis. Procedia Engineering 68:326–30. doi:10.1016/j.proeng.2013.12.187.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.