161
Views
0
CrossRef citations to date
0
Altmetric
TECHNICAL PAPERS

Quantifying flare combustion efficiency using an imaging Fourier transform spectrometer

, , , , , & show all
Pages 319-334 | Received 24 Oct 2023, Accepted 22 Jan 2024, Published online: 01 Apr 2024

References

  • Ahsan, A., H. Ahsan, J.S. Olfert, and L.W. Kostiuk. 2019. Quantifying the carbon conversion efficiency and emission indices of a lab-scale natural gas flare with internal coflows of air or steam. Exp. Therm. Fluid Sci. 103:133–42. doi:10.1016/j.expthermflusci.2019.01.013.
  • Aoun, A.E., V. Rasouli, and Y. Khetib. 2023. Assessment of advanced technologies to capture gas flaring in North Dakota. Arab. J. Sci. Eng. 48 (12):16507–25. doi:10.1007/s13369-023-07611-4.
  • Caulton, D.R., P.B. Shepson, M.O.L. Cambaliza, D. McCabe, E. Baum, and B.H. Stirm. 2014. Methane destruction efficiency of natural gas flares associated with shale formation wells. Environ. Sci. Technol. 48 (16):9548–54. doi:10.1021/es500511w.
  • Conrad, B.M., and M.R. Johnson. 2021. An uncertainty-based protocol for the setup and measurement of soot–black carbon emissions from gas flares using sky-LOSA. Atmos. Meas. Tech. 14 (2):1573. doi:10.5194/amt-14-1573-2021.
  • Farley, V., A. Vallières, M. Chamberland, A. Villemaire, and J.-F. Legault. 2006. Performance of the FIRST: A long-wave infrared hyperspectral imaging sensor. In Proceedings of SPIE 6398:164–174. Stockholm Sweden. doi:10.1117/12.689487.
  • Gagnon, M.-A., S.S. Tremblay, P. Lagueux and M. Chamberland. 2013. “Stanoff thermal hyperspectral imaging for flare and smokestack characterization in industrial environments,” In 5th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, Gainesville, FL.
  • Gordon, I.E., L.S. Rothman, R.J.H.R. Hargreaves, E.V. Karlovets, F.M. Skinner, E.K. Conway, R.V. Hill, C. Kochanov, P. Tan, Y. Wcisło, et al. 2022. The HITRAN2020 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transfer 277:107949. doi:10.1016/j.jqsrt.2021.107949.
  • Government of Canada. 2023. National pollutant release inventory. Accessed June 30, 2022. https://www.canada.ca/en/services/environment/pollution-waste-management/national-pollutant-release-inventory.html.
  • Grauer, S.J., B.M. Conrad, R.B. Miguel, and K.J. Daun. 2018. Gaussian model for emission rate measurement of heated plumes using hyperspectral data. J. Quant. Spectrosc. Radiat. Transfer 206:125–34. doi:10.1016/j.jqsrt.2017.11.005.
  • Gross, K.C., K.C. Bradley, and G.P. Perram. 2010. Remote identification and quantification of industrial smokestack effluents via imaging Fourier-transform spectroscopy. Environ. Sci. Technol. 44 (24):9390–97. doi:10.1021/es101823z.
  • Gupta, A., D.C. Haworth, and M.F. Modest. 2013. Turbulence-radiation interactions in large-eddy simulations of luminous and nonluminous nonpremixed flames. Proc. Comb. Inst. 34 (1):1281–88. doi:10.1016/j.proci.2012.05.052.
  • Gvakharia, A., E.A. Kort, A. Brandt, J. Peischl, T.B. Ryerson, J.P. Schwarz, M.L. Smith, and C. Sweeney. 2017. Methane, black carbon, and ethane emissions from natural gas flares in the Bakken Shale, North Dakota. Environ. Sci. Technol. 51 (9):5317–25. doi:10.1021/acs.est.6b05183.
  • Horn, B.K.P., and B.G. Schunck. 1981. Determining optical flow. Artif. Intell. 17 (1–3):185–203. doi:10.1016/0004-3702(81)90024-2.
  • IPCC. 2024. AR5 climate change 2013: The physical science basis. IPCC. https://www.ipcc.ch/report/ar5/wg1/.
  • Johnson, M.R., D.J. Wilson, and L.W. Kostiuk. 2001. A fuel stripping mechanism for wake-stabilized jet diffusion flames in crossflow. Combust. Sci. Technol. 169 (1):155–174. doi:10.1080/00102200108907844.
  • Lucas, B.D. and T. Kanade. 1981. An iterative image registration technique with an application to stereo vision. In IJCAI’81: 7th international joint conference on Artificial intelligence, Vancouver, Canada.
  • MathWorks. 2023. lsqnonlin documentation. MathWorks. https://www.mathworks.com/help/optim/ug/lsqnonlin.html.
  • Miguel, R.B., S. Talebi-Moghaddam, M. Zamani, C. Turcotte, and K.J. Daun. 2021. Assessing flare combustion efficiency using imaging fourier transform spectroscopy. J. Quant. Spectrosc. Rad. Trans 273:107835. doi:10.1016/j.jqsrt.2021.107835.
  • Montazeri, A., X. Zhou, and J.D. Albertson. 2021. On the viability of video imaging in leak rate quantification: a theoretical error analysis. Sensors 21 (17):5683. doi:10.3390/s21175683.
  • Plant, G., E.A. Kort, A.R. Brandt, Y. Chen, G. Fordice, A.M. Gorchov Negron, S. Schwietzke, M. Smith, and D. Zavala-Araiza. 2022. Inefficient and unlit natural gas flares both emit large quantities of methane. Science 377 (6614):1566–71. doi:10.1126/science.abq0385.
  • Pohl, J.H., B.A. Tichenor, J. Lee, and R. Payne. 1986. Combustion efficiency of flares. Combust. Sci. Technol. 50 (4–6):217–31. doi:10.1080/00102208608923934.
  • Revercomb, H.E., H. Buijs, H.B. Howell, D.D. LaPorte, W.L. Smith, and L.A. Sromovsky. 1988. Radiometric calibration of IR fourier transform spectrometers: Solution to a problem with the high-resolution interferometer Sounder. Appl. Opt. 27 (15):3210–18. doi:10.1364/AO.27.003210.
  • Savary, S., J.-P. Gagnon, K. Gross, P. Tremblay, M. Chamberland, and V. Farley. 2011 Standoff identification and quantification of flare emissions using infrared hyperspectral imaging. In Proceedings of SPIE 8024:165–172. Orlando, Florida, United States. doi:10.1117/12.884342.
  • Sharpe, S.W., T.J. Johnson, R.L. Sams, P.M. Chu, G.C. Rhoderick, and P.A. Johnson. 2004. “Gas-phase databases for quantitative infrared spectroscopy. Appl. Spectrosc. 58:1452–61. J. Quant. Spectrosc. Radiat. Trans., vol. 58, pp. 1452–1461, 2004.
  • Torres, V.M., S. Herndon, and D.T. Allen. 2012. Industrial flare performance at low flow conditions. 2. Steam-and air-assisted flares. Ind. Eng. Chem. Res. 51:12569–76.
  • Tremblay, P., K.C. Gross, V. Farley, M. Chamberland, A. Villemaire, and G.P. Perram. 2009 Understanding and overcoming scene-change artifacts in imaging Fourier-transform spectroscopy of turbulent jet engine exhaust. In Proceedings of SPIE 7457:98–110. San Diego, California, United States. doi:10.1117/12.828001.
  • U. S. E. O. of Air Quality Planning and S. (OAQPS). 2012. Parameters for properly designed and operated flares. https://www3.epa.gov/airtoxics/flare/2012flaretechreport.pdf.
  • World Bank. 2022. Global Gas Flaring Reduction Partnership (GGFR). World Bank. Accessed July, 2023. https://www.worldbank.org/en/programs/gasflaringreduction/global-flaring-data.
  • Wormhoudt, J., S.C. Herndon, J. Franklin, E.C. Wood, B. Knighton, S. Evans, C. Laush, M. Sloss, and R. Spellicy. 2012. Comparison of remote sensing and extractive sampling measurements of flare combustion efficiency. Ind. Eng. Chem. Res. 51 (39):12621–29. doi:10.1021/ie202783m.
  • Zamani, M., E. Abbasi-Atibeh, S. Mobaseri, H. Ahsan, A. Ahsan, J.S. Olfert, and L.W. Kostiuk. 2021. An experimental study on the carbon conversion efficiency and emission indices of air and stream co-flow diffusion jet flames. Fuel 287:119534. doi:10.1016/j.fuel.2020.119534.
  • Zeng, Y., J. Morris, and M. Dombrowski. 2016. Validation of a new method for measuring and continuously monitoring the efficiency of industrial flares. Journal Of The Air & Waste Management Association 66 (1):76–86. doi:10.1080/10962247.2015.1114045.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.