85
Views
0
CrossRef citations to date
0
Altmetric
TECHNICAL PAPERS

Cloning and characterization of FMN-dependent azoreductases from textile industry effluent identified through metagenomic sequencing

ORCID Icon, , ORCID Icon, , ORCID Icon & ORCID Icon
Pages 335-344 | Received 30 Sep 2023, Accepted 19 Feb 2024, Published online: 23 Apr 2024

References

  • Al-Tohamy, R., S. S. Ali, F. Li, K. M. Okasha, Y.A.-G. Mahmoud, T. Elsamahy, H. Jiao, Y. Fu, and J. Sun. 2022. A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol. Environ. Saf. 231:113160. doi:10.1016/j.ecoenv.2021.113160.
  • Bekhit, F., S. Farag, and A. M. Attia. 2020. Decolorization and degradation of the azo dye by bacterial cells coated with magnetic iron oxide nanoparticles. Environ. Nanotechnol. Monit. Manage. 14:100376. doi:10.1016/j.enmm.2020.100376.
  • Bhandari, S., D. K. Poudel, R. Marahatha, S. Dawadi, K. Khadayat, S. Phuyal, S. Shrestha, S. Gaire, K. Basnet, U. Khadka, et al. 2021. Microbial enzymes used in bioremediation. J. Chem. 2021:1–17. doi:10.1155/2021/8849512.
  • Chan, W. T., C. S. Verma, D. P. Lane, and S. K. E. Gan. 2013. A comparison and optimization of methods and factors affecting the transformation of Escherichia coli. Biosci. Rep. 33 (6). doi:10.1042/BSR20130098.
  • Chollom, M. N., S. Rathilal, V. L. Pillay, and D. Alfa. 2015. The applicability of nanofiltration for the treatment and reuse of textile reactive dye effluent. Water SA 41 (3):398–405. doi:10.4314/wsa.v41i3.12.
  • Elfarash, A., A.M.M. Mawad, N.M.M. Yousef, and A.A.M. Shoreit. 2017. Azoreductase kinetics and gene expression in the synthetic dyes-degrading Pseudomonas. Egypt. J. Basic Appl. Sci. 4 (4):315–22. doi:10.1016/j.ejbas.2017.07.007.
  • Feng, J., O. Kweon, H. Xu, C. E. Cerniglia, and H. Chen. 2012. Probing the NADH- and methyl red-binding site of a FMN-dependent azoreductase (AzoA) from Enterococcus faecalis. Arch. Biochem. Biophys. 520 (2):99–107. doi:10.1016/j.abb.2012.02.010.
  • Fernandes, F. H., E. Bustos-Obregon, and D.M.F. Salvadori. 2015. Disperse red 1 (textile dye) induces cytotoxic and genotoxic effects in mouse germ cells. Reprod. Toxicol. 53:75–81. doi:10.1016/j.reprotox.2015.04.002.
  • Holkar, C. R., A. J. Jadhav, D.V. Pinjari, N. M. Mahamuni, and A. B. Pandit. 2016. A critical review on textile wastewater treatments: Possible approaches. J. Environ. Manage. 182:351–66. doi:10.1016/j.jenvman.2016.07.090.
  • Ikram, M., M. Naeem, M. Zahoor, A. Rahim, M. M. Hanafiah, A. A. Oyekanmi, A. B. Shah, M. H. Mahnashi, A. Al Ali, N. A. Jalal, et al. 2022. Biodegradation of azo dye methyl red by Pseudomonas aeruginosa: Optimization of process conditions. Int. J. Environ. Res. Public Health 19(16):1–28. doi:10.3390/ijerph19169962.
  • Kamal, I. M., N. F. Abdeltawab, Y. M. Ragab, M. A. Farag, and M. A. Ramadan. 2022. Biodegradation, decolorization, and detoxification of Di-Azo dye direct red 81 by Halotolerant, alkali-thermo-tolerant bacterial mixed cultures. Microorganisms 10 (5):994. doi:10.3390/microorganisms10050994.
  • Karagoz, B., G. Bayramoglu, B. Altintas, N. Bicak, and M. Yakup Arica. 2011. Amine functional monodisperse microbeads via precipitation polymerization of N-vinyl formamide: Immobilized laccase for benzidine based dyes degradation. Bioresour. Technol. 102 (13):6783–90. doi:10.1016/j.biortech.2011.03.050.
  • Kumar, D., Z. Patel, P. Pandit, R. Pandit, A. Patel, M. Joshi, and C. Joshi. 2021. Textile industry wastewaters from Jetpur, Gujarat, India, are dominated by Shewanellaceae, Bacteroidaceae, and Pseudomonadaceae harboring genes encoding catalytic enzymes for textile dye degradation. Front. Environ. Sci. 9:1–15. doi:10.3389/fenvs.2021.720707.
  • Lellis, B., C. Z. Fávaro-Polonio, J. A. Pamphile, and J. C. Polonio. 2019. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnol. Res. Innovation 3 (2):275–90. doi:10.1016/j.biori.2019.09.001.
  • Lima, N.S.M., E. S. Gomes-Pepe, J. C. Campanharo, and E. G. de Macedo Lemos. 2022. Broad thermal spectrum metagenomic laccase with action for dye decolorization and fentin hydroxide treatment. AMB Express 12 (1). doi:10.1186/s13568-022-01375-0.
  • Madhuri, T., B. Lakshmi Kalyani, and P. Suvarnalatha Devi. 2016. Role of azoreductase enzyme produced by potential Bacillus spp in decolourization of azo reactive red. Der Pharm. Lett. 8:181–86.
  • Maniyam, M. N., A. L. Ibrahim, and A.E.G. Cass. 2020. Decolourization and biodegradation of azo dye methyl red by Rhodococcus strain UCC 0016. Environ. Technol. (UK) 41 (1):71–85. doi:10.1080/09593330.2018.1491634.
  • Matsumoto, K., Y. Mukai, D. Ogata, F. Shozui, J. M. Nduko, S. Taguchi, and T. Ooi. 2010. Characterization of thermostable FMN-dependent NADH azoreductase from the moderate thermophile Geobacillus stearothermophilus. Appl. Microbiol. Biotechnol. 86 (5):1431–38. doi:10.1007/s00253-009-2351-7.
  • Modi, H. A., G. Rajput, and C. Ambasana. 2010. Decolorization of water soluble azo dyes by bacterial cultures, isolated from dye house effluent. Bioresour. Technol. 101 (16):6580–83. doi:10.1016/j.biortech.2010.03.067.
  • Mousavi, S. M., S. A. Hashemi, S. M. Iman Moezzi, N. Ravan, A. Gholami, C. W. Lai, W.-H. Chiang, N. Omidifar, K. Yousefi, and G. Behbudi. 2021. Recent advances in enzymes for the bioremediation of pollutants. Biochem. Res. Int. 2021:1–12. doi:10.1155/2021/5599204.
  • Nizam, N. U. M., M. M. Hanafiah, E. Mahmoudi, A. W. Mohammad, and A. A. Oyekanmi. 2022. Effective adsorptive removal of dyes and heavy metal using graphene oxide based pre-treated with NaOH/H2SO4 rubber seed shells synthetic graphite precursor: Equilibrium isotherm, kinetics and thermodynamic studies. Sep. Purif. Technol. 289:120730. doi:10.1016/j.seppur.2022.120730.
  • Noman, E., A. Al-Gheethi, B. A. Talip, R. Mohamed, and A. H. Kassim. 2021. Decolourization of dye wastewater by a Malaysian isolate of aspergillus iizukae 605EAN strain: A biokinetic, mechanism and microstructure study. Int. J. Environ. Anal. Chem. 101 (11):1592–615. doi:10.1080/03067319.2019.1686146.
  • Oyekanmi, A. A., A. Ahmad, S. H. Mohd Setapar, M. B. Alshammari, M. Jawaid, M. M. Hanafiah, H.P.S. Abdul Khalil, and A. Vaseashta. 2021. Sustainable Durio zibethinus-derived biosorbents for Congo red removal from aqueous solution: Statistical optimization, isotherms and mechanism studies. Sustainability 13 (23):13264. doi:10.3390/su132313264.
  • Parshetti, G. K., A. A. Telke, D. C. Kalyani, and S. P. Govindwar. 2010. Decolorization and detoxification of sulfonated azo dye methyl orange by Kocuria rosea MTCC 1532. J. Hazard. Mater. 176 (1–3):503–09. doi:10.1016/j.jhazmat.2009.11.058.
  • Pour Nouroozi, R. 2015. Determination of protein concentration using Bradford microplate protein quantification assay. Int. Electron. J. Med. 4:11–17. doi:10.31661/iejm158.
  • Pricelius, S., C. Held, M. Murkovic, M. Bozic, V. Kokol, A. Cavaco-Paulo, and G. M. Guebitz. 2007. Enzymatic reduction of azo and indigoid compounds. Appl. Microbiol. Biotechnol. 77 (2):321–27. doi:10.1007/s00253-007-1165-8.
  • Rizal, S., H.P.S. Abdul Khalil, A. A. Oyekanmi, O. N. Gideon, C. K. Abdullah, E. B. Yahya, T. Alfatah, F. A. Sabaruddin, and A. A. Rahman. 2021. Cotton wastes functionalized biomaterials from micro to nano: A cleaner approach for a sustainable environmental application. Polymers 13 (7):1006. doi:10.3390/polym13071006.
  • Rosano, G. L., and E. A. Ceccarelli. 2014. Recombinant protein expression in Escherichia coli: Advances and challenges. Front. Microbiol. 5:1–17. doi:10.3389/fmicb.2014.00172.
  • Santhanarajan, A. E., C. Y. Rhee, W. J. Sul, K. Yoo, H. J. Seong, H.-G. Kim, and S.-C. Koh. 2022. Transcriptomic analysis of degradative pathways for azo dye acid blue 113 in Sphingomonas melonis B‐2 from the dye wastewater treatment process. Microorganisms 10 (2):1–17. doi:10.3390/microorganisms10020438.
  • Saranraj, P., D. Stella, and P. Sivasakthivelan. 2014. Scholars research library separation, purification and characterization of dye degrading enzyme azoreductase from bacterial isolates. Cent. Eur. J. Exp. Biol. 3:19–25.
  • Sarkar, S., A. Banerjee, U. Halder, R. Biswas, and R. Bandopadhyay. 2017. Degradation of synthetic azo dyes of textile industry: A sustainable approach using microbial enzymes. Water Conserv. Sci. Eng. 2 (4):121–31. doi:10.1007/s41101-017-0031-5.
  • Seemann, T. 2014. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 30 (14):2068–69. doi:10.1093/bioinformatics/btu153.
  • So, K. O., P. K. Wong, and K. Chan. 1990. Decolorization and biodegradation of methyl red by acetobacter liquefaciens. Toxic. Assess. 5 (3):221–35. doi:10.1002/tox.2540050303.
  • Sosa-Martínez, J. D., N. Balagurusamy, J. Montañez, R. A. Peralta, R.D.F.P.M. Moreira, A. Bracht, R. M. Peralta, and L. Morales-Oyervides. 2020. Synthetic dyes biodegradation by fungal ligninolytic enzymes: Process optimization, metabolites evaluation and toxicity assessment. J. Hazard. Mater. 400:123254. doi:10.1016/j.jhazmat.2020.123254.
  • Srinivasulu, M., M.S. Chandra, N.R. Maddela, N. Golla, and B. Ramesh. 2022. Recent trends in bioremediation of pollutants by enzymatic approaches. In Cost effective technologies for solid waste and wastewater treatment, 115–34. doi:10.1016/b978-0-12-822933-0.00018-8.
  • Takkar, S., B. Tyagi, N. Kumar, T. Kumari, K. Iqbal, A. Varma, I. S. Thakur, and A. Mishra. 2022. Biodegradation of methyl red dye by a novel actinobacterium Zhihengliuella sp. ISTPL4: Kinetic studies, isotherm and biodegradation pathway. Environ. Technol. Innovation 26:102348. doi:10.1016/j.eti.2022.102348.
  • Wei, R., and W. Zimmermann. 2017. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: How far are we? Microb. Biotechnol. 10 (6):1308–22. doi:10.1111/1751-7915.12710.
  • Yamaguchi, H., and M. Miyazaki. 2014. Refolding techniques for recovering biologically active recombinant proteins from inclusion bodies. Biomolecules 4 (1):235–51. doi:10.3390/biom4010235.
  • Yaseen, D. A., and M. Scholz. 2019. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. Int. J. Environ. Sci. Technol. 16 (2):1193–226. doi:10.1007/s13762-018-2130-z.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.