90
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Late Paleoproterozoic deposition and Mesoproterozoic metamorphism of detrital material in the southernmost Baltic Sea region (Gdańsk IG1 borehole): monazite versus zircon and chemical versus isotopic age record

ORCID Icon, ORCID Icon & ORCID Icon
Pages 4-29 | Received 07 Feb 2023, Accepted 18 Apr 2023, Published online: 15 Jun 2023

References

  • Alviola, R., Johanson, B.S., Rämö, O.T. & Vaasjoki, M., 1999: The Proterozoic Ahvenisto rapakivi granite–massif-type anorthosite complex, southeastern Finland; petrography and U–Pb chronology. Precambrian Research 95, 89–107. doi:10.1016/S0301-9268(98)00128-4.
  • Amelin, Y.V., Larin, A.M. & Tucker, R.D., 1997: Chronology of multiphase emplacement of the Salmi rapakivi granite-anorthosite complex, Baltic Shield: implications for magmatic evolution. Contribution to Mineralogy and Petrology 127, 353–368. doi:10.1007/s004100050285.
  • Andersson, U.B., Högdahl, K., Sjöström, H. & Bergman, S., 2006: Multistage growth and reworking of the Palaeoproterozoic crust in the Bergslagen area, southern Sweden: evidence from U–Pb geochronology. Geological Magazine 143, 679–697. doi:10.1017/S0016756806002494.
  • Andersson, U.B., Sjostrom, H., Högdahl, K. & Eklund, O., 2004: Transscandinavian Igneous Belt, evolutionary models. In K. Högdahl, U.B. Andersson & O. Eklund (eds.): The Transscandinavian Igneous Belt (TIB) in Sweden: A Review of its Character and Evolution. 104 pp. Espoo: Vammalan Kirjapaino Oy. Geological Survey of Finland Special Paper 37.
  • Appelquist, K., Cornell, D. & Brander, L., 2008: Age, tectonic setting and petrogenesis of the Habo Volcanic suite: evidence for an active continental margin setting for the Transscandinavian Igneous Belt. GFF 130, 123–138. doi:10.1080/11035890809453228.
  • Åhäll, K.I., 2001: Åldersbestämning av svårdaterade bergarter i sydöstra Sverige. SKB, 24 pp. [in Swedish].
  • Åhäll, K.I. & Connelly, J.N., 2008: Long-term convergence along SW Fennoscandia: 330 my of Proterozoic crustal growth. Precambrian Research 161, 452–474. doi:10.1016/j.precamres.2007.09.007.
  • Åhäll, K.I. & Larson, SÅ, 2000: Growth-related 1.85–1.55 Ga magmatism in the Baltic Shield; a review addressing the tectonic characteristics of Svecofennian, TIB 1-related, and Gothian events. GFF 122, 193–206. doi:10.1080/11035890001222193.
  • Bagiński, B., 2006: Different ages recorded by zircon and monazite in charnockitic rocks from the Łanowicze borehole (NE Poland). Mineralogia Polonica Special Papers 29, 79.
  • Bea, F., 1996: Residence of REE, Y, Th and U in granites and crustal protoliths; implications for the chemistry of crustal melts. Journal of Petrology 37, 521–552. doi:10.1093/petrology/37.6.1601.
  • Bea, F. & Montero, P., 1999: Behavior of accessory phases and redistribution of Zr, REE, Y, Th, and U during metamorphism and partial melting of metapelites in the lower crust: an example from the Kinzigite formation of Ivrea-Verbano, NW Italy. Geochimica et Cosmochimica Acta 63, 1133–1153. doi:10.1016/S0016-7037(98)00292-0.
  • Bea, F., Montero, P., Garuti, G. & Zacharini, F., 1997: Pressure-dependence of rare earth element distribution in amphibolite-and granulite-grade garnets. A LA-ICP-MS study. Geostandards Newsletter 21, 253–270. doi:10.1111/j.1751-908X.1997.tb00674.x.
  • Bea, F., Montero, P. & Ortega, M., 2006: A LA–ICP–MS evaluation of Zr reservoirs in common crustal rocks: implications for Zr and Hf geochemistry, and zircon-forming processes. The Canadian Mineralogist 44, 693–714. doi:10.2113/gscanmin.44.3.693.
  • Bergman, S., Högdahl, K., Nironen, M., Ogenhall, E., Sjöström, H., Lundqvist, L. & Lahtinen, R., 2008: Timing of Palaeoproterozoic intra-orogenic sedimentation in the central Fennoscandian Shield; evidence from detrital zircon in metasandstone. Precambrian Research 161, 231–249. doi:10.1016/j.precamres.2007.08.007.
  • Bergman, S. & Weihed, P., 2020: Archean (> 2.6 Ga) and Paleoproterozoic (2.5–1.8 Ga), pre-and syn-orogenic magmatism, sedimentation and mineralization in the Norrbotten and Överkalix lithotectonic units, Svecokarelian orogen. Geological Society, London, Memoirs 50, 27–81. doi:10.1144/M50-2016-2.
  • Bhatia, M.R., 1983: Plate tectonics and geochemical composition of sandstones. The Journal of Geology 91, 611–627. doi:10.1086/628815.
  • Bhatia, M.R. & Crook, K.A., 1986: Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contributions to Mineralogy and Petrology 92, 181–193. doi:10.1007/BF00375292.
  • Bibikova, E.V., Bogdanova, S.V., Claesson, S., Gorbatschev, R. & Kirnozova, T.I., 1995: Age, nature and structure of the Precambrian crust in Belarus. Stratigraphy and Geological Correlation 6, 591–601.
  • Bingen, B., Andersson, J., Söderlund, U. & Möller, C., 2008: The Mesoproterozoic in the Nordic countries. Episodes Journal of International Geoscience 31, 29–34. doi:10.18814/epiiugs/2008/v31i1/005.
  • Black, L.P., Kamo, S.L., Allen, C.M., Davis, D.W., Aleinikoff, J.N., Valley, J.W., Mundil, R., Campbell, I.H., Korsch, R.J., Williams, I.S. & Foudoulis, C., 2004: Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology 205, 115–140. doi:10.1016/j.chemgeo.2004.01.003.
  • Bogdanova, S.V., Čečys, A., Bibikova, E.V., Ilyinsky, L.S. & Taran, L.N., 2014: Danopolonian migmatization of Mesoproterozoic sedimentary rocks in southernmost Sweden: a SIMS zircon study. GFF 136, 410–428. doi:10.1080/11035897.2013.855815.
  • Bogdanova, S.V., Gorbatschev, R., Skridlaite, G., Soesoo, A., Taran, L. & Kurlovich, D., 2015: Trans-Baltic Palaeoproterozoic correlations towards the reconstruction of supercontinent Columbia/Nuna. Precambrian Research 259, 5–33. doi:10.1016/j.precamres.2014.11.023.
  • Borinski, S.A., Hoppe, U., Chakraborty, S., Ganguly, J. & Bhowmik, S.K., 2012: Multicomponent diffusion in garnets I: general theoretical considerations and experimental data for Fe-Mg systems. Contributions to Mineralogy and Petrology 164, 571–586. doi:10.1007/s00410-012-0758-0.
  • Bracciali, L., Marroni, M., Pandolfi, L., Rocchi, S., Arribas, J., Critelli, S. & Johnsson, M.J., 2007: Geochemistry and petrography of western Tethys Cretaceous sedimentary covers (Corsica and Northern Apennines): from source areas to configuration of margins. Special Papers-Geological Society of America 420, 73. doi:10.1130/2006.2420(06).
  • Brander, L. & Söderlund, U., 2009: Mesoproterozoic (1.47–1.44 Ga) orogenic magmatism in Fennoscandia; baddeleyite U–Pb dating of a suite of massif-type anorthosite in S. Sweden. International Journal of Earth Sciences 98, 499–516. doi:10.1007/s00531-007-0281-0.
  • Brown, E.H. & Walker, N.W., 1993: A magma-loading model for Barrovian metamorphism in the southeast coast plutonic complex, British Columbia and Washington. Geological Society of America Bulletin 105, 479–500. doi:10.1130/0016-7606(1993)105<;0479:AMLMFB>2.3.CO;2.
  • Cathelineau, M. & Nieva, D., 1985: A chlorite solid solution geothermometer the Los Azufres (Mexico) geothermal system. Contributions to Mineralogy and Petrology 91, 235–244. doi:10.1007/BF00413350.
  • Claesson, S., Bogdanova, S.V., Bibikova, E.V. & Gorbatschev, R., 2001: Isotopic evidence for Palaeoproterozoic accretion in the basement of the East European Craton. Tectonophysics 339, 1–18. doi:10.1016/S0040-1951(01)00031-2.
  • Cordani, U.G. & Teixeira, W., 2007: Proterozoic accretionary belts in the Amazonian Craton. Geological Society of America Memoirs 200, 297–320.
  • Čečys, A., 2004: Tectonic implications of ca. 1.45 Ga granitoid magmatism at the southwestern margin of the East European Craton. Doctoral thesis. Department of Geology, Lund University, 34 pp.
  • Čečys, A., Bogdanova, S., Janson, C., Bibikova, E. & Kornfält, K.A., 2002: The Stenshuvud and Tåghusa granitoids: new representatives of Mesoproterozoic magmatism in southern Sweden. GFF 124, 149–162. doi:10.1080/11035890201243149.
  • de Béthune, P., Laduron, D. & Bocquet, J., 1975: Diffusion processes in resorbed garnets. Contributions to Mineralogy and Petrology 50, 197–204. doi:10.1007/BF00371039.
  • Elming, SÅ, Shumlyanskyy, L., Kravchenko, S., Layer, P. & Söderlund, U., 2010: Proterozoic basic dykes in the Ukrainian Shield: A palaeomagnetic, geochronologic and geochemical study–The accretion of the Ukrainian Shield to Fennoscandia. Precambrian Research 178, 119–135. doi:10.1016/j.precamres.2010.02.001.
  • Floyd, P.A. & Leveridge, B.E., 1987: Tectonic environment of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbiditic sandstones. Journal of the Geological Society 144, 531–542. doi:10.1144/gsjgs.144.4.0531.
  • Foster, G., Gibson, H.D., Parrish, R., Horstwood, M., Fraser, J. & Tindle, A., 2002: Textural, chemical and isotopic insights into the nature and behaviour of metamorphic monazite. Chemical Geology 191, 183–207. doi:10.1016/S0009-2541(02)00156-0.
  • Fraser, G., Ellis, D. & Eggins, S., 1997: Zirconium abundance in granulite-facies minerals, with implications for zircon geochronology in high-grade rocks. Geology 25, 607–610. doi:10.1130/0091-7613(1997)025<0607:ZAIGFM>2.3.CO;2.
  • Gasser, D., Bruand, E., Rubatto, D. & Stüwe, K., 2012: The behaviour of monazite from greenschist facies phyllites to anatectic gneisses: an example from the Chugach Metamorphic Complex, southern Alaska. Lithos 134, 108–122. doi:10.1016/j.lithos.2011.12.003.
  • Gaudette, H.E., Mendoza, V., Hurley, P.M. & Fairbairn, H.W., 1978: Geology and age of the Parguaza rapakivi granite, Venezuela. Geological Society of America Bulletin 89, 1335–1340. doi:10.1130/0016-7606(1978)89<1335:GAAOTP>2.0.CO;2.
  • Grad, M. & Polkowski, M., 2016: Seismic basement in Poland. International Journal of Earth Sciences 105, 1199–1214. doi:10.1007/s00531-015-1233-8.
  • Heinonen, A.P., Andersen, T. & Rämö, O.T., 2010a: Re-evaluation of rapakivi petrogenesis: source constraints from the Hf isotope composition of zircon in the rapakivi granites and associated mafic rocks of southern Finland. Journal of Petrology 51, 1687–1709. doi:10.1093/petrology/egq035.
  • Heinonen, A.P., Rämö, O.T., Mänttäri, I., Johanson, B. & Alviola, R., 2010b: Formation and fractionation of high-Al tholeiitic magmas in the Ahvenisto rapakivi granite–massif-type anorthosite complex, southeastern Finland. The Canadian Mineralogiest 48, 969–990. doi:10.3749/canmin.48.4.969.
  • Heinonen, A.P., Rämö, O.T., Mänttäri, I., Andersen, T. & Larjamo, K., 2017: Zircon as a proxy for the magmatic evolution of Proterozoic ferroan granites; the Wiborg rapakivi granite batholith, SE Finland. Journal of Petrology 58, 2493–2517. doi:10.1093/petrology/egy014.
  • Henry, D.J., Guidotti, C.V. & Thomson, J.A., 2005: The Ti-saturation surface for low-to-medium pressure metapelitic biotites: implications for geothermometry and Ti-substitution mechanisms. American Mineralogist 90, 316–328. doi:10.2138/am.2005.1498.
  • Herron, M.M., 1988: Geochemical classification of terrigenous sands and shales from core or log data. Journal of Sedimentary Research 58, 820–829. doi:10.1306/212F8E77-2B24-11D7-8648000102C1865D.
  • Hiscott, R.N., 1984: Ophiolitic source rocks for taconic-age flysch: trace-element evidence. Geological Society of America Bulletin 95, 1261–1267. doi:10.1130/0016-7606(1984)95<1261:OSRFTF>2.0.CO;2.
  • Holdaway, M.J., 2001: Recalibration of the GASP geobarometer in light of recent garnet and plagioclase activity models and versions of the garnet-biotite geothermometer. American Mineralogist 86, 1117–1129. doi:10.2138/am-2001-1001.
  • Högdahl, K., Andersson, U.B. & Eklund, O., 2004: The Transscandinavian Igneous Belt (TIB) in Sweden: a review of its character and evolution. Geological Survey of Finland 37, 1–125.
  • Jercinovic, M.J. & Williams, M.L., 2005: Analytical perils (and progress) in electron microprobe trace element analysis applied to geochronology: background acquisition, interferences, and beam irradiation effects. American Mineralogist 90, 526–546. doi:10.2138/am.2005.1422.
  • Johansson, Å., 2009: Baltica, Amazonia and the SAMBA connection—1000 million years of neighbourhood during the Proterozoic? Precambrian Research 175, 221–234. doi:10.1016/j.precamres.2009.09.011.
  • Johansson, Å., Bogdanova, S.V. & Čečys, A., 2006: A revised geochronology for the Blekinge Province, southern Sweden. GFF 128, 287–302. doi:10.1080/11035890601284287.
  • Johansson, Å. & Stephens, M.B., 2017: Timing of magmatism and migmatization in the 2.0–1.8 Ga accretionary Svecokarelian orogen, south-central Sweden. International Journal of Earth Sciences 106, 783–810. doi:10.1007/s00531-016-1359-3.
  • Kathol, B., Hansen Serre, S. & Thomsen, T.B., 2020: Provenance of Svecofennian sedimentary rocks in Bergslagen and surrounding areas. SGU Report 22, 91, pp.
  • Kirs, J. & Petersell, V., 1994: Age and geochemical character of plagiomicrocline granite veins in the Abja gabbro-dioritic massif. Acta et Commentationes Universitatis Tartuensis de Mathematica 972, 3–15.
  • Kleinhanns, I.C., Whitehouse, M.J., Nolte, N., Baero, W., Wilsky, F., Hansen, B.T. & Schoenberg, R., 2015: Mode and timing of granitoid magmatism in the Västervik area (SE Sweden, Baltic Shield): Sr–Nd isotope and SIMS U–Pb age constraints. Lithos 212, 321–337. doi:10.1016/j.lithos.2014.10.013.
  • Kohn, M.J., 2016: Metamorphic chronology–a tool for all ages: past achievements and future prospects. American Mineralogist 101, 25–42. doi:10.2138/am-2016-5146.
  • Kranidiotis, P. & MacLean, W.H., 1987: Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit, Matagami, Quebec. Economic Geology 82, 1898–1911. doi:10.2113/gsecongeo.82.7.1898.
  • Krzemińska, E., 2010: Geochemiczna i izotopowa rekonstrukcja środowiska geotektonicznego domeny mazowieckiej w podłożu prekambryjskim północno-wschodniej Polski. Prace Państwowego Instytutu Geologicznego 195, 1–74, in Polish].
  • Krzemińska, E., Johansson, ÅE, Krzemiński, L., Wiszniewska, J., Williams, I.S., Petecki, Z. & Salwa, S., 2021: Basement correlation across the southernmost Baltic Sea: geochemical and geochronological evidence from onshore and offshore deep drill cores, northern Poland. Precambrian Research 362, 106300. doi:10.1016/j.precamres.2021.106300.
  • Krzemińska, E., Krzemiński, L., Petecki, Z., Wiszniewska, J., Salwa, S., Żaba, J., Gaidzik, K., Williams, I.S., Rosowiecka, O., Taran, L., Johansson, Å, Pécskay, Z., Demaiffe, D., Grabowski, J. & Zieliński, G., 2017: Geological Map of crystalline basement in the Polish part of the East European Platform 1:1000000. Państwowy Instytut Geologiczny, Warsaw, 58 pp.
  • Krzemińska, E., Wiszniewska, J., Skridlaite, G. & Williams, I., 2009: Late Svecofennian sedimentary basins in the crystalline basement of NE Poland and adjacent area of Lithuania: ages, major sources of detritus, and correlations. Geological Quarterly 53, 255–272.
  • Krzemiński, L., Krzemińska, E. & Wiszniewska, J., 2019: Detrital zircon geochronology and provenance of the Proterozoic quartz-rich metasediments of the Mazowsze domain: source areas and regional correlation. Biuletyn Państwowego Instytutu Geologicznego 74, 59–72. doi:10.5604/01.3001.0013.0840.
  • Lahtinen, R., 2000: Archaean–Proterozoic transition: geochemistry, provenance and tectonic setting of metasedimentary rocks in central Fennoscandian Shield, Finland. Precambrian Research 104, 147–174. doi:10.1016/S0301-9268(00)00087-5.
  • Larson, SÅ & Berglund, J., 1992: A chronological subdivision of the Transscandinavian Igneous Belt–three magmatic episodes? GFF 114, 459–461. doi:10.1080/11035899209453912.
  • Likhanov, I.I., Polyansky, O.P., Reverdatto, V.V. & Memmi, I., 2004: Evidence from Fe-and Al-rich metapelites for thrust loading in the Transangarian region of the Yenisey Ridge, eastern Siberia. Journal of Metamorphic Geology 22, 743–762. doi:10.1111/j.1525-1314.2004.00546.x.
  • Ludwig, K.R., 2003: User’s manual for Isoplot/Ex version 3.00, a geochronological toolkit for Microsoft Excel. 72 pp. Berkeley Geochronology Center Special Publications 4.
  • Ludwig, K.R., 2009: User’s manual for Squid 2.50, Berkeley Geochronology Center Special Publication 5.
  • Lundmark, A.M. & Lamminen, J., 2016: The provenance and setting of the Mesoproterozoic Dala Sandstone, western Sweden, and paleogeographic implications for southwestern Fennoscandia. Precambrian Research 275, 197–208. doi:10.1016/j.precamres.2016.01.003.
  • Lundqvist, T., Skiöld, T. & Vaasjoki, M., 2000: Archaean–Proterozoic geochronology of the Vallen-Alhamn area, northern Sweden. GFF 122, 273–280. doi:10.1080/11035890001223273.
  • Maneiro, K.A., Jordan, M.K. & Baxter, E.F., 2022: Detrital garnet geochronology: A New window into ancient tectonics and sedimentary provenance. In K.W.W. Sims, K. Maher & D.P Schrag (eds.): Isotopic Constraints on Earth System Processes, 217–236. Hoboken: John Wiley & Sons. Geophysical Monograph Series. doi:10.1002/9781119595007.ch9.
  • Mansfeld, J., 1996: Geological, geochemical and geochronological evidence for a new Palaeoproterozoic terrane in southeastern Sweden. Precambrian Research 77, 91–103. doi:10.1016/0301-9268(95)00046-1.
  • Mansfeld, J., 2001: Age and εNd constraints on the Palaeoproterozoic tectonic evolution in the Baltic-Sea region. Tectonophysics 339, 135–151. doi:10.1016/S0040-1951(01)00036-1.
  • McKay, M.P., Jackson Jr, W.T. & Hessler, A.M., 2018: Tectonic stress regime recorded by zircon Th/U. Gondwana Research 57, 1–9. doi:10.1016/j.gr.2018.01.004.
  • McLennan, S.M., 1989: Rare earths elements in sedimentary rocks: influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry 21, 169–200.
  • McLennan, S.M., Hemming, S., McDaniel, D.K. & Hanson, G.N., 1993: Geochemical approaches to sedimentation, provenance, and tectonics. In M.J. Johnsson & A. Basu (eds.): Processes controlling the composition of clastic sediments, 21–40. Boulder: Geological Society of America. Special Paper 284. doi:10.1130/SPE284-p21
  • McLennan, S.M., Taylor, S.R. & Kröner, A., 1983: Geochemical evolution of Archean shales from South Africa. I. The Swaziland and Pongola Supergroups. Precambrian Research 22, 93–124. doi:10.1016/0301-9268(83)90060-8.
  • Meert, J.G. & Santosh, M., 2022: The Columbia supercontinent: retrospective, status, and a statistical assessment of paleomagnetic Poles used in reconstructions. Gondwana Research 110, 143–164. doi:10.1016/j.gr.2022.06.014.
  • Merlet, C., 1994: An accurate computer correction program for quantitative electron probe microanalysis. Microchimica Acta 114, 363–376. doi:10.1007/BF01244563.
  • Montel, J.M., Foret, S., Veschambre, M., Nicollet, C. & Provost, A., 1996: Electron microprobe dating of monazite. Chemical Geology 131, 37–53. doi:10.1016/0009-2541(96)00024-1.
  • Motuza, G., Čečys, A., Kotov, A.B. & Salnikova, E.B., 2006: The Žemaičių Naumiestis granitoids: new evidences for Mesoproterozoic magmatism in western Lithuania. GFF 128, 243–254. doi:10.1080/11035890601283243.
  • Motuza, G., Motuza, V., Salnikova, E. & Kotov, A., 2008: Extensive charnockitic-granitic magmatism in the crystalline crust of West Lithuania. Geologija 61, 1–16. doi:10.2478/v10056-008-0001-x.
  • Nakamura, N., 1974: Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites. Geochimica et Cosmochimica Acta 38, 757–775. doi:10.1016/0016-7037(74)90149-5.
  • Narkiewicz, M. & Petecki, Z., 2017: Basement structure of the paleozoic platform in Poland. Geological Quarterly 61, 502–520. doi:10.7306/gq.1356.
  • Nesbitt, H. & Young, G.M., 1982: Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 715–717. doi:10.1038/299715a0.
  • Obst, K., Hammer, J., Katzung, G. & Korich, D., 2004: The Mesoproterozoic basement in the southern Baltic Sea: insights from the G 14–1 off-shore borehole. International Journal of Earth Sciences 93, 1–12. doi:10.1007/s00531-003-0371-6.
  • Petecki, Z. & Rosowiecka, O., 2017: A new magnetic anomaly map of Poland and its contribution to the recognition of crystalline basement rocks. Geological Quarterly 61, 934–945. doi:10.7306/gq.1383.
  • Rämö, O.T., Huhma, H. & Kirs, J., 1996: Radiogenic isotopes of the Estonian and Latvian rapakivi granite suites: new data from the concealed Precambrian of the East European Craton. Precambrian Research 79, 209–226. doi:10.1016/S0301-9268(95)00083-6.
  • Rämö, O.T., Turkki, V., Mänttäri, I., Heinonen, A., Larjamo, K.M. & Lahaye, Y., 2014: Age and isotopic fingerprints of some plutonic rocks in the Wiborg rapakivi granite batholith with special reference to the dark wiborgite of the Ristisaari Island. Bulletin of the Geological Society of Finland 86, 71–91.
  • Rimsa, A., Whitehouse, M.J. & Johansson, L.J., 2004: Modification of zircon morphology and geochemistry during metamorphism–a case study from Sondrum, SW Sweden. GFF 126, 34.
  • Roser, B.P. & Korsch, R.J., 1986: Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. The Journal of Geology 94, 635–650. doi:10.1086/629071.
  • Rubatto, D., Hermann, J. & Buick, I.S., 2006: Temperature and bulk composition control on the growth of Monazite and Zircon during low-pressure Anatexis (Mount Stafford, Central Australia). Journal of Petrology 47, 1976–1996. doi:10.1093/petrology/egl033.
  • Salin, E., Sundblad, K. & Lahaye, Y., 2021a: A 1.85 Ga volcanic arc offshore the proto-continent Fennoscandia in southern Sweden. Precambrian Research 356, 106134. doi:10.1016/j.precamres.2021.106134.
  • Salin, E., Sundblad, K., Woodard, J. & O’Brien, H., 2019a: The extension of the Transscandinavian Igneous Belt into the Baltic Sea region. Precambrian Research 328, 287–308. doi:10.1016/j.precamres.2019.04.016.
  • Salin, E., Travin, A., Sundblad, K. & Woodard, J., 2019b: 40Ar−39Ar biotite geochronology: new insights into the magmatic evolution of the Proterozoic in the Baltic Sea region. Geophysical Research Abstracts 21, 2624.
  • Salin, E., Woodard, J. & Sundblad, K., 2021b: Tracing the SW border of the Svecofennian domain in the Baltic Sea region: evidence from petrology and geochronology from a granodioritic migmatite. International Journal of Earth Sciences 110, 1027–1047. doi:10.1007/s00531-021-02005-z.
  • Salminen, J., Elming, SÅ, Mertanen, S., Wang, C., Almqvist, B. & Moakhar, M.O., 2021: Paleomagnetic studies of rapakivi complexes in the Fennoscandian Shield–implications to the origin of Proterozoic massif-type anorthosite magmatism. Precambrian Research 365, 106406. doi:10.1016/j.precamres.2021.106406.
  • Schulz, B., 2021: Monazite microstructures and their interpretation in petrochronology. Frontiers in Earth Science 9, 668566. doi:10.3389/feart.2021.668566.
  • Siivola, J., 1987: Lovasjärven mafinen intruusio. Geological Survey of Finland, Report of Investigation 76, 121–128, [in Swedish].
  • Siliauskas, L. & Skridlaite, G., 2015: C. 1.5 Ga metamorphism of the Lazdijai 13 volcano-sedimentary sequence in southern Lithuania: its origin and implications. In EGU General Assembly Conference Abstracts, 9782.
  • Siliauskas, L., Skridlaite, G., Bagiński, B., Whitehouse, M. & Prusinskiene, S., 2018: What the ca. 1.83 Ga gedrite-cordierite schists in the crystalline basement of Lithuania tell us about the late Palaeoproterozoic accretion of the East European Craton. GFF 140, 332–344. doi:10.1080/11035897.2018.1544588.
  • Skiöld, T. & Page, R.W., 1998: SHRIMP and isotope dilution zircon ages on Archean basement-cover rocks in north Sweden. Nordic Geological Winter Meeting, Aarhus, 273 p.
  • Skridlaite, G., Bagiński, B. & Whitehouse, M., 2008: Significance of ∼1.5 Ga zircon and monazite ages from charnockites in southern Lithuania and NE Poland. Gondwana Research 14, 663–674. doi:10.1016/j.gr.2008.01.009.
  • Skridlaite, G., Bogdanova, S., Taran, L. & Bagiński, B., 2014: Recurrent high grade metamorphism recording a 300 Ma long Proterozoic crustal evolution in the western part of the East European Craton. Gondwana Research 25, 649–667. doi:10.1016/j.gr.2013.04.011.
  • Skridlaite, G., Siliauskas, L., Whitehouse, M.J., Johansson, Å & Rimsa, A., 2021: On the origin and evolution of the 1.86–1.76 Ga Mid-Baltic Belt in the western East European Craton. Precambrian Research 367, 106403. doi:10.1016/j.precamres.2021.106403.
  • Skridlaite, G., Whitehouse, M. & Rimša, A., 2007: Evidence for a pulse of 1.45 Ga anorthosite–mangerite–charnockite–granite (AMCG) plutonism in Lithuania: implications for the Mesoproterozoic evolution of the East European Craton. Terra Nova 19, 294–301. doi:10.1111/j.1365-3121.2007.00748.x.
  • Söderlund, U., Jarl, L.G., Persson, P.O., Stephens, M.B. & Wahlgren, C.H., 1999: Protolith ages and timing of deformation in the eastern, marginal part of the Sveconorwegian orogen, southwestern Sweden. Precambrian Research 94, 29–48. doi:10.1016/S0301-9268(98)00104-1.
  • Steiger, R.H. & Jäger, E., 1977: Subcommission on geochronology: convention on the use of decay constants in geo-and cosmochronology. Earth and Planetary Science Letters 36, 359–362. doi:10.1016/0012-821X(77)90060-7.
  • Stephens, M.B. & Andersson, J., 2015: Migmatization related to mafic underplating and intra-or back-arc spreading above a subduction boundary in a 2.0–1.8 Ga accretionary orogen, Sweden. Precambrian Research 264, 235–257. doi:10.1016/j.precamres.2015.04.019.
  • Sultan, L., Claesson, S. & Plink-Björklund, P., 2005: Proterozoic and Archaean ages of detrital zircon from the Palaeoproterozoic Västervik basin. SE Sweden: Implications for Provenance and Timing of Deposition. GFF 127, 17–24. doi:10.1080/11035890501271017.
  • Sundblad, K., Salin, E., Claesson, S., Gyllencreutz, R. & Billström, K., 2021: The Precambrian of Gotland, a key for understanding the Proterozoic evolution in southern Fennoscandia. Precambrian Research 363, 106321. doi:10.1016/j.precamres.2021.106321.
  • Tassinari, C.C. & Macambira, M.J., 1999: Geochronological provinces of the Amazonian Craton. Episodes Journal of International Geoscience 22, 174–182. doi:10.18814/epiiugs/1999/v22i3/004.
  • Taylor, S.R. & McLennan, S.M., 1985: The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, 312 pp.
  • Ulmius, J., 2013: PT evolution of paragneisses and amphibolites from Romeleåsen, Scania, southernmost Sweden. Doctoral thesis. Department of Geology, Lund University, 36 pp.
  • Vaasjoki, M., 1977: Rapakivi granites and other postorogenic rocks in Finland: their age and the lead isotopic composition of certain associated galena mineralizations. Bulletin of the Geological Society of Finland 294, 1–71.
  • Vejelyte, I., Bogdanova, S., Salnikova, E., Yakovleva, S. & Fedoseenko, A., 2010: Timing of ductile shearing within the Druksiai-Polotsk Deformation Zone, Lithuania: a U-Pb titanite age. Estonian Journal of Earth Sciences 59, 256–262.
  • Vejelyte, I., Bogdanova, S. & Skridlaite, G., 2015: Early Mesoproterozoic magmatism in northwestern Lithuania: a new U–Pb zircon dating. Estonian Journal of Earth Sciences 64, 189–198.
  • Whitehouse, M.J. & Platt, J.P., 2003: Dating high-grade metamorphism–constraints from rare-earth elements in zircon and garnet. Contributions to Mineralogy and Petrology 145, 61–74. doi:10.1007/s00410-002-0432-z.
  • Wiedenbeck, M.A.P.C., Alle, P., Corfu, F.Y., Griffin, W.L., Meier, M., Oberli, F.V., Von Quadt, A., Roddick, J.C. & Spiegel, W., 1995: Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostandards Newsletter 19, 1–23. doi:10.1111/j.1751-908X.1995.tb00147.x.
  • Williams, I.S., 1998: U-Th-Pb geochronology by Ion microprobe. In M.A. McKibben, W.C. Shanks III & W.I. Ridley (eds.): Applications of Microanalytical Techniques to Understanding Mineralizing Processes. 35 pp, 7. Littleton: Reviews in Economic Geology.
  • Williams, I.S., 2001: Response of detrital zircon and monazite, and their U–Pb isotopic systems, to regional metamorphism and host-rock partial melting, Cooma Complex, southeastern Australia. Australian Journal of Earth Sciences 48, 557–580. doi:10.1046/j.1440-0952.2001.00883.x.
  • Williams, I.S., Buick, I.S. & Cartwright, I., 1996: An extended episode of early Mesoproterozoic metamorphic fluid flow in the Reynolds Range, Central Australia. Journal of Metamorphic Geology 14, 29–47. doi:10.1111/j.1525-1314.1996.00029.x.
  • Williams, I.S., Krzemińska, E. & Wiszniewska, J., 2009: An extension of the Svecofennian orogenic province into NE Poland: evidence from geochemistry and detrital zircon from Paleoproterozoic paragneisses. Precambrian Research 172, 234–254. doi:10.1016/j.precamres.2009.04.009.
  • Williams, M.L., Jercinovic, M.J., Goncalves, P. & Mahan, K., 2006: Format and philosophy for collecting, compiling, and reporting microprobe monazite ages. Chemical Geology 225, 1–15. doi:10.1016/j.chemgeo.2005.07.024.
  • Zang, W. & Fyfe, W.S., 1995: Chloritization of the hydrothermally altered bedrock at the Igarapé Bahia gold deposit, Carajás, Brazil. Mineralium Deposita 30, 30–38. doi:10.1007/BF00208874.
  • Zariņš, K. & Johansson, Å, 2009: U-Pb geochronology of gneisses and granitoids from the Danish island of Bornholm: new evidence for 1.47–1.45 Ga magmatism at the southwestern margin of the East European Craton. International Journal of Earth Sciences 98, 1561–1580. doi:10.1007/s00531-008-0333-0.
  • Zeh, A., Williams, I.S., Brätz, H. & Millar, I.L., 2003: Different age response of zircon and monazite during the tectono-metamorphic evolution of a high grade paragneiss from the Ruhla Crystalline Complex, central Germany. Contributions to Mineralogy and Petrology 145, 691–706. doi:10.1007/s00410-003-0462-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.