832
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Wild boar (Sus scrofa) has minor effects on soil nutrient and carbon dynamics

ORCID Icon, ORCID Icon & ORCID Icon
Pages 84-96 | Received 17 Jan 2023, Accepted 26 May 2023, Published online: 04 Jun 2023

References

  • Allison S, Martiny J. 2008. Resistance, resilience and redundancy in microbial communities. null. 105(Supp 1):11512–11519. doi:10.1073/pnas.0801925105.
  • Allison V, Miller M, Jastrow J, Matamala R, Zak D. 2005. Changes in soil microbial community structure in a tallgrass prairie chronosequence. Soil Sci Soc Am J. 69(5):1412–1421. doi:10.2136/sssaj2004.0252.
  • Andersen J. 1976. An ignition method for determination of total phosphorous in lake sediments. Water Res. 10(4):329–331. doi:10.1016/0043-1354(76)90175-5.
  • Bååth E, Andersson T. 2003. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biol Biochem. 35(7):955–963. doi:10.1016/S0038-0717(03)00154-8.
  • Bardgett D, Wardle D. 2010. Aboveground-belowground linkages. Oxford: Oxford University Press.
  • Barrios-Garcia M, Ballari S. 2012. Impact of wild boar (Sus scrofa) in its introduced and native range: a review. Biol Invasions. 14(11):2283–2300. doi:10.1007/s10530-012-0229-6.
  • Bates D, Maechler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. J Stat Softw. 67(1):1–48. doi:10.18637/jss.v067.i01.
  • Berg B, McClaugherty C. 2014. Plant litter decomposition, humus formation, carbon sequestration. 3rd ed. Berlin: Springer.
  • Bernes C, Macura B, Jonsson B, Junninen K, Muller J, Sandstrom J, Lohmus A, Macdonald E. 2018. Manipulating ungulate herbivory in temperate and boreal forests: effects on vegetation and invertebrates. A systematic review. Environ Evid. 7(1):13. doi:10.1186/s13750-018-0125-3.
  • Carter M, Gregorich E, Carter MR, Gregorich EG. 2007. Soil sampling and methods of analysis. Ottawa: Canadian Society of Soil Science.
  • Clemmensen K, Bahr A, Ovaskainen O, Dahlberg A, Ekblad A, Wallander H, Stenlid J, Finlay R, Wardle D, Lindahl B. 2013. Roots and associated fungi drive long-term carbon sequestration in boreal forests. Science. 339(6127):1615–1618. doi:10.1126/science.1231923.
  • Cuevas M, Mastrantonio L, Ojeda R, Jaksic M. 2012. Effects of wild boar disturbance on vegetation and soil properties in the Monte Desert, Argentina. Mamm Biol. 77(4):299–306. doi:10.1016/j.mambio.2012.02.003.
  • Davies GM, Gray A. 2015. Don’t let spurious accusations of pseudoreplication limit our ability to learn from natural experiments (and other messy kinds of ecological monitoring). Ecol Evol. 5(22):5295–5304. doi:10.1002/ece3.1782.
  • Demoling F, Nilsson L, Bååth E. 2008. Bacterial and fungal response to nitrogen fertilization in three coniferous forest soils. Soil Biol Biochem. 40(2):370–379. doi:10.1016/j.soilbio.2007.08.019.
  • Don A. 2022. No threat to global soil carbon stocks by wild boar grubbing. Glob Change Biol. 28(3):685–686. doi:10.1111/gcb.15990.
  • Don A, Hagen C, Grüneberg E, Vos C. 2019. Simulated wild boar bioturbation increases the stability of forest soil carbon. Biogeosci. 16(21):4145–4155. doi:10.5194/bg-16-4145-2019.
  • Fox J, Weisberg S. 2019. An R companion to applied regression. Thousand Oaks CA: Sage.
  • Frostegård Å, Bååth E. 1996. The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil. Boil Fert Soils. 22(1–2):59–65. doi:10.1007/BF00384433.
  • Frostegård Å, Tunlid A, Bååth E. 1991. Microbial biomass measured as total lipid phosphate in soils of different organic content. J Microbiol Meth. 14(3):151–163. doi:10.1016/0167-7012(91)90018-L.
  • Gallo M, Amonette R, Lauber C, Sinsabaugh R, Zak D. 2004. Microbial community structure and oxidative enzyme activity in nitrogen-amended north temperate forest soils. Microb Ecol. 48(2):218–229. doi:10.1007/s00248-003-9001-x.
  • Gray S, Roloff G, Kramer D, Etter D, Vercauteren K, Montgomery R. 2020. Effects of wild pig disturbance on forest vegetation and soils. J Wild Mgmt. 84(4):739–748. doi:10.1002/jwmg.21845.
  • Gutiérrez J, Jones C. 2006. Physical ecosystem engineers as agents of biogeochemical heterogeneity. BioScience. 56(3):227–236. doi:10.1641/0006-356820060560227:PEEAAO2.0.CO;2
  • Högberg P, Nordgren A, Buchmann N, Taylor A, Ekblad A, Högberg M, Nyberg G, Ottosson-Löfvenius M, Read D. 2001. Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature. 411(6839):789–792. doi:10.1038/35081058.
  • Hoogsteen J, Lantinga E, Bakker E, Groot J, Tittonell P. 2015. Estimating soil organic carbon through loss on ignition: effects of ignition conditions and structural water loss. Eur J Soil Sci. 66(2):320–328. doi:10.1111/ejss.12224.
  • Jackson L, Calderonb F, Steenwertha K, Scowc K, Rolstonc D. 2003. Responses of soil microbial processes and community structure to tillage events and implications for soil quality. Geoderma. 114(3–4):305–317. doi:10.1016/S0016-7061(03)00046-6.
  • Jensen P. 2017. The ethology of domestic animals: an introductory text. Wallingford, UK: CABI.
  • Kempers A, Zweers A. 2008. Ammonium determination in soil extracts by the salicylate method. Communicat Soil Sci Plant Analy. 17(7):715–723. doi:10.1080/00103628609367745.
  • Kolstad A, Austrheim G, Solberg E, Venete A, Woodin S, Speed J. 2018. Cervid exclusion alters boreal forest properties with little cascading impacts on soils. Ecosystems. 21(5):1027–1041. doi:10.1007/s10021-017-0202-4.
  • Kuznetsova A, Brockhoff P, Christensen R. 2017. lmertest package: tests in linear mixed effects models. J Stat Softw. 82(13):1–26.
  • Lacki M, Lancia R. 1986. Effects of wild pigs on beech growth in great smoky mountains national park. J Wildlife Manage. 50:655–659. doi:10.2307/3800976.
  • Leroux S, Wiersma Y, Wal E. 2020. Herbivore impacts on carbon cycling in boreal forests. Trends Ecol Evol. 35(11):1001–1010. doi:10.1016/j.tree.2020.07.009.
  • Lindahl B, De Boer W, Finlay R. 2010. Disruption of root carbon transport into forest humus stimulates fungal opportunists at the expense of mycorrhizal fungi. Isme J. 4(7):872–881. doi:10.1038/ismej.2010.19.
  • Lindahl B, Ihrmark K, Boberg J, Trumbore S, Högberg P, Stenlid J, Finlay R. 2007. Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol. 173(3):611–620. doi:10.1111/j.1469-8137.2006.01936.x.
  • Liu J, Feng C, Wang D, Wang L, Wilsey B, Zhong Z, Firn J. 2015. Impacts of grazing by different large herbivores in grassland depend on plant species diversity. J Appl Ecol. 52(4):1053–1062. doi:10.1111/1365-2664.12456.
  • Liu Y, Liu X, Yang Z, Li G, Liu S. 2020. Wild boar grubbing causes organic carbon loss from both top- and sub-soil in an oak forest in central China. Forest Ecol Manag. 464:118059. doi:10.1016/j.foreco.2020.118059.
  • Liu L, Zhang T, Gilliam F, Gundersen P, Zhang W, Chen H, Mo J. 2013. Interactive effects of nitrogen and phosphorous on soil microbial communities in a tropical forest. PLos One. 8:e61188. doi:10.1371/journal.pone.0061188.
  • Long M, Litton C, Giardina C, Deenik J, Cole R, Sparks J. 2017. Impact of nonnative feral pig removal on soil structure and nutrient availability in Hawaiian tropical montane wet forests. Biol Invas. 19(3):749–763. doi:10.1007/s10530-017-1368-6.
  • Maaroufi N, Taylor A, Ehnes R, Andrén H, Kjellander P, Björkman C, Kätterer T, Klapwijk M. 2022. Northward range expansion of rooting ungulates decreases detritivore and predatory mite abundances in boreal forests. Royal Soc Open Sci. 9(7):211283. doi:10.1098/rsos.211283.
  • Mack M, D’Antonio C. 1998. Impacts of biological invasions on disturbance regimes. Trends Ecol Evol. 13(5):195–198. doi:10.1016/S0169-5347(97)01286-X.
  • O’Bryan C, Patton N, Hone J, Lewis J, Berdejo-Espinola V, Risch D, Holden M, McDonald-Madden E. 2021. Unrecognized threat to global soil carbon by a widespread invasive species. Glob Change Biol. 28(3):877–882. doi:10.1111/gcb.15769.
  • Oksanen F, Blanchet G, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin P, O’Hara R, Simpson G, Solymos P, et al. 2020. Vegan: community ecology package. R Package Version 2.5-7. https://CRAN.R-project.org/package=vegan.
  • Perry D, Oren R, Hart S. 2008. Forest ecosystems. Baltimore: Johns Hopkins University Press.
  • Persico E, Sharp S, Angelini C. 2017. Feral hog disturbance alters carbon dynamics in southeastern US salt marshes. Mar Ecol Prog Ser. 580:57–68. doi:10.3354/meps12282.
  • QGIS Development Team. 2020. QGIS geographic information system. Open Source Geospatial Foundation Project. https://www.qgis.org/en/site/.
  • Qian P, Schoenau J. 2005. Use of ion-exchange membrane to assess nitrogen-supply power of soils. J Plant Nutr. 28(12):2193–2200. doi:10.1080/01904160500324717.
  • R Core Team. 2021. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
  • Revelle W. 2020. Psych: procedures for psychological, psychometric and personality research. Evanston, Illinois: Northwestern University.
  • Risch A, Wirthner S, Busse M, Pade-Dumroese D, Schütz M. 2010. Grubbing by wild boars (Sus scrofa L.) and its impact on hardwood forest soil carbon dioxide emissions in Switzerland. Oecologia. 164(3):773–784. doi:10.1007/s00442-010-1665-6.
  • Siemann E, Carrillo J, Gabler C, Zipp R, Rogers W. 2009. Experimental test of the impacts of feral hogs on forest dynamics and processes in the southeastern US. Forest Ecol Manag. 258(5):546–553. doi:10.1016/j.foreco.2009.03.056.
  • SMHI. 2009. Normal årsmedeltemperatur. Norrköping, Sweden: Swedish Meteorological and Hydrological Institute.
  • Sterkenburg E, Barh A, Durling M, Clemmensen K, Lindahl B. 2015. Changes in fungal communities along a boreal forest soil fertility gradient. New Phytol. 207(4):1145–1158. doi:10.1111/nph.13426.
  • Sullivan P, Ellison S, McNown R, Brownlee A, Sveinbjörnsson B. 2015. Evidence of soil nutrient availability as the proximate constraint on growth of treeline trees in Northwest Alaska. Ecology. 96(3):716–727. doi:10.1890/14-0626.1.
  • Svenska jägareförbundet. 2018. Förekomst och förvaltning av vildsvin i Sverige – en analys från svenska jägareförbundets viltövervakning 2017. Nyköping, Sweden: Svenska Jägareförbundet.
  • Swedish Environmental Protection Agency. 2019. Nationell förvaltningsplan för vildsvin. Stockholm, Sweden: Swedish Environmental Protection Agency.
  • Tamm C. 1991. Nitrogen in terrestrial ecosystems: questions of productivity, vegetational changes, and ecosystem stability. Berlin: Springer-Verlag.
  • Tang Y, Horikoshi M, Li W. 2016. Ggfortify: unified interface to visualize statistical result of popular R packages. R J. 8(2):474–485.
  • Vázguez D. 2002. Multiple effects of introduced mammalian herbivores in a temperate forest. Biol Invasions. 4(1/2):175–191. doi:10.1023/A:1020522923905.
  • Wang X, Zhang W, Shao Y, Zhao J, Zhou L, Zou X, Fu S. 2019. Fungi to bacteria ratio: historical misinterpretations and potential implications. Acta Oecologica. 95:1–11. doi:10.1016/j.actao.2018.10.003.
  • Wickham H. 2016. Ggplot2: elegant graphics for data analysis. New York: Springer-Verlag.
  • Wirthner S, Schütz M, Page-Dumroese D, Busse M, Kirchner J, Risch A. 2012. Do changes in soil properties after rooting by wild boars (Sus scrofa) affect understory vegetation in Swiss hardwood forests? Can J Forest Res. 42(3):585–592. doi:10.1139/x2012-013.
  • Yao H, He Z, Wilson M, Campbell C. 2000. Microbial biomass and community structure in a sequence of soils with increasing fertility and changing land use. Microb Ecol. 40(3):223–237. doi:10.1007/s002480000053.