50
Views
0
CrossRef citations to date
0
Altmetric
Articles

Effects of Different Intensities and Wavelengths of Light on the Growth of Juvenile Tridacna noae

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1-10 | Received 05 Mar 2023, Published online: 21 Dec 2023

References

  • Arossa, S., Martin, C., Rossbach, S. & Duarte, C.M. (2019) Microplastic removal by Red Sea giant clam (Tridacna maxima). Environmental Pollution 252, 1257–1266. doi:10.1016/j.envpol.2019.05.149.
  • Bonham, K. (1965) Growth rate of giant clam Tridacna gigas at Bikini Atoll as revealed by radioautography. Science 149, 300–302.
  • Boo, M.V., Pang, C.Z., Chew, S.F. & Ip, Y.K. (2022) Molecular characterization, immunofluorescent localization, and expression levels of two bicarbonate anion transporters in the whitish mantle of the giant clam, Tridacna squamosa, and the implications for light-enhanced shell formation. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology 268, 111200. doi:10.1016/j.cbpa.2022.111200.
  • Borsa, P., Fauvelot, C., Tiavouane, J., Grulois, D., Wabnitz, C., Naguit, M.R.A. & Andrefouet, S. (2015) Distribution of Noah's giant clam, Tridacna noae. Marine Biodiversity 45, 339–344. doi:10.1007/s12526-014-0265-9.
  • Braley, R.D., Militz, T.A. & Southgate, P.C. (2018) Comparison of three hatchery culture methods for the giant clam Tridacna noae. Aquaculture 495, 881–887.
  • Brunelle, S.A., Hazard, E.S., Sotka, E.E. & Dolah, F.M.V. (2007) Characterization of a dinoflagellate cryptochrome blue-light receptor with a possible role in circadian control of the cell cycle. Journal of Phycology 43, 509–518. doi:10.1111/j.1529-8817.2007.00339.x.
  • Chan, J.W.J., Boo, M.V., Wong, W.P., Chew, S.F. & Ip, Y.K. (2021) Illumination enhances the protein abundance of sarcoplasmic reticulum Ca2+-ATPases-like transporter in the ctenidium and whitish inner mantle of the giant clam, Tridacna squamosa, to augment exogenous Ca2 + uptake and shell formation, respectively. Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology 251, 110811. doi:10.1016/j.cbpa.2020.110811.
  • Chew, S.F., Koh, C.Z.Y., Hiong, K.C., Choo, C.Y.L., Wong, W.P., Neo, M.L. & Ip, Y.K. (2019) Light-enhanced expression of Carbonic Anhydrase 4-like supports shell formation in the fluted giant clam Tridacna squamosa. Gene 683, 101–112. doi:10.1016/j.gene.2018.10.023.
  • Chiang, J.Y., Chen, Y.C. & Chen, Y.F. (2011) Underwater image enhancement: using wavelength compensation and image dehazing (WCID). In: Blanc-Talon, J., Kleihorst, R., Philips, W., Popescu, D. & Scheunders, P. (Eds), International Conference on Advanced Concepts for Intelligent Vision Systems. Proceedings 13. Springer, Berlin, pp. 372–383.
  • Cohen, I., Dubinsky, Z. & Erez, J. (2016) Light enhanced calcification in hermatypic corals: new insights from light spectral responses. Frontiers in Marine Science 2, 122. doi:10.3389/fmars.2015.00122.
  • Comeau, S., Carpenter, R.C. & Edmunds, P.J. (2017) Effects of pCO2 on photosynthesis and respiration of tropical scleractinian corals and calcified algae. ICES Journal of Marine Science 74, 1092–1102. doi:10.1093/icesjms/fsv267.
  • Copland, J.W. & Lucas, J.S. (1988) Giant Clams in Asia and the Pacific. Australian Centre for International Agricultural Research, Canberra.
  • Daugbjerg, N., Hansen, G., Larsen, J. & Moestrup, Ø. (2000) Phylogeny of some of the major genera of dinoflagellates based on ultrastructure and partial LSU rDNA sequence data, including the erection of three new genera of unarmoured dinoflagellates. Phycologia 39, 302–317.
  • D'Angelo, C., Denzel, A., Vogt, A., Matz, M.V., Oswald, F., Salih, A., Nienhaus, G.U. & Wiedenmann, J. (2008) Blue light regulation of host pigment in reef-building corals. Marine Ecology Progress Series 364, 97–106. doi:10.3354/meps07588.
  • Fabina, N.S., Putnam, H.M., Franklin, E.C., Stat, M. & Gates, R.D. (2013) Symbiotic specificity, association patterns, and function determine community responses to global changes: defining critical research areas for coral-Symbiodinium symbioses. Global Change Biology 19, 3306–3316. doi:10.1111/gcb.12320.
  • Ghoshal, A., Eck, E., Gordon, M. & Morse, D.E. (2016) Wavelength-specific forward scattering of light by Bragg-reflective iridocytes in giant clams. Journal of the Royal Society Interface 13, 20160285. doi:10.1098/rsif.2016.0285.
  • Goddijn-Murphy, L. & Dufaur, J. (2018) Proof of concept for a model of light reflectance of plastics floating on natural waters. Marine Pollution Bulletin 135, 1145–1157. doi:10.1016/j.marpolbul.2018.08.044.
  • Godwin, B. (2021). Penetration of Visible Radiation from Sunlight through Water. University of Minnesota Sea Grant Program, City of Duluth, USA. doi:10.1314/0RG.2.2.33099.11046
  • Gong, S., Li, G., Liang, J., Xu, L., Tan, Y., Jin, X., Xia, X. & Yu, K. (2023) Day-night cycle as a key environmental factor affecting coral-Symbiodiniaceae symbiosis. Ecological Indicators 146, 109890. doi:10.1016/j.ecolind.2023.109890.
  • Griffiths, D., Winsor, H. & Luongvan, T. (1992) Iridophores in the mantle of giant clams. Australian Journal of Zoology 40, 319–326. doi:10.1071/ZO9920319.
  • Hamner, W.M. & Jones, M.S. (1976) Distribution, burrowing, and growth rates of the clam Tridacna crocea on interior reef flats. Oecologia 24, 207–227. doi:10.1007/BF00345474.
  • Hean, R.L. & Cacho, O.J. (2003) A growth model for giant clams Tridacna crocea and T. derasa. Ecological modelling 163, 87–100. doi:10.1016/S0304-3800(02)00400-3.
  • Ip, Y.K., Boo, M.V., Mies, M. & Chew, S.F. (2022) The giant clam Tridacna squamosa quickly regenerates iridocytes and restores symbiont quantity and phototrophic potential to above-control levels in the outer mantle after darkness-induced bleaching. Coral Reefs 41, 35–51. doi:10.1007/s00338-021-02199-3.
  • Ip, Y.K. & Chew, S.F. (2021) Light-dependent phenomena and related molecular mechanisms in giant clam-dinoflagellate associations: A review. Frontiers in Marine Science 8, 627722. doi:10.3389/fmars.2021.627722.
  • Ip, Y.K., Hiong, K.C., Lim, L.J.Y., Choo, C.Y.L., Boo, M.V., Wong, W.P., Neo, M.L. & Chew, S.F. (2018) Molecular characterization, light-dependent expression, and cellular localization of a host vacuolar-type H+-ATPase (VHA) subunit A in the giant clam, Tridacna squamosa, indicate the involvement of the host VHA in the uptake of inorganic carbon and its supply to the symbiotic zooxanthellae. Gene 659, 137–148. doi:10.1016/j.gene.2018.03.054.
  • Kinzie, R., Jokiel, P. & York, R. (1984) Effects of light of altered spectral composition on coral zooxanthellae associations and on zooxanthellae in vitro. Marine Biology 78, 239–248. doi:10.1007/BF00393009.
  • Klueter, A., Trapani, J., Archer, F.I., McIlroy, S.E. & Coffroth, M.A. (2017) Comparative growth rates of cultured marine dinoflagellates in the genus Symbiodinium and the effects of temperature and light. PLoS One 12, e0187707. doi:10.1371/journal.pone.0187707.
  • Klunzinger, C.B. (1879) Die Korallthiere des Rothen Meeres, 2. Theil: Die Steinkorallen. Erster Abschnitt: Die Madreporaceen und Oculinaceen. Gutmann, Berlin. pp. 1–88.
  • Kühl, M., Cohen, Y., Dalsgaard, T., Jørgensen, B.B. & Revsbech, N.P. (1995) Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors for O2, pH and light. Marine Ecology Progress Series 117, 159–172.
  • Lamarck, J. B. M. de. (1819) Histoire naturelle des animaux sans vertèbres. Tome 6(1): vi + 343 pp. Paris: published by the author. Available online at http://www.biodiversitylibrary.org/item/47441
  • Li, J., Shan, E., Zhao, J., Teng, J. & Wang, Q. (2023) The factors influencing the vertical transport of microplastics in marine environment: A review. Science of The Total Environment 870, 161893. doi:10.1016/j.scitotenv.2023.161893.
  • Li, J., Zhou, Y.Y., Qin, Y.P., Wei, J.K., Shigong, P.Y., Ma, H.T., Li, Y.Q., Yuan, X.C., Zhao, L.Q., Yan, H., Zhang, Y.H. & Yu, Z.N. (2022) Assessment of the juvenile vulnerability of symbiont-bearing giant clams to ocean acidification. Science of the Total Environment 812, 152265. doi:10.1016/j.scitotenv.2021.152265.
  • Liu, C.S., Li, X.B., Wu, C.L., Wang, A.M. & Gu, Z.F. (2020) Effects of three light intensities on the survival, growth performance and biochemical composition of two size giant clams Tridacna crocea in the Southern China Sea. Aquaculture 528, 735448. doi:10.1016/j.aquaculture.2020.735448">10.1016/j.aquaculture.2020.735448.
  • Liu, C., Liu, X., Wang, H., Wang, A. & Gu, Z. (2018) Effects of light intensity and spectra on metabolism of ammonia, active phosphates, and oxygen consumption in Tridacna crocea. Oceanologia et Limnologia Sinica 49, 313–318.
  • Lucas, J.S. (1994) The biology, exploitation, and mariculture of giant clams (Tridacnidae). Reviews in Fisheries Science 2, 181–223. doi:10.1080/10641269409388557.
  • McConnaughey, T.A., Burdett, J., Whelan, J.F. & Paull, C.K. (1997) Carbon isotopes in biological carbonates: respiration and photosynthesis. Geochimica et Cosmochimica Acta 61, 611–622.
  • Milne, E.H. & Haime, J. (1851) Recherches sur les polypiers. Mémoire 7. Monographie des Poritides. Annales des Sciences Naturelles, Zoologie, Series 3, 21–70.
  • Militz, T.A., Braley, R.D. & Southgate, P.C. (2017) Captive hybridization of the giant clams Tridacna maxima (Roding, 1798) and Tridacna noae (Roding, 1798). Journal of Shellfish Research 36, 585–591. doi:10.2983/035.036.0306.
  • Neo, M.L., Wabnitz, C.C.C., Braley, R.D., Heslinga, G.A., Fauvelot, C., Van Wynsberge, S., Andrefouet, S., Waters, C., Tan, A.S.H., Gomez, E.D., Costello, M.J. & Todd, P.A. (2017) Giant Clams (Bivalvia: Cardiidae: Tridacninae): A comprehensive update of species and their distribution, current threats and conservation status. In: Hawkins, S.J., Evans, A.J., Dale, A.C., Firth, L.B., Hughes, D.J. & Smith, I.P. (Eds), Oceanography and Marine Biology: An Annual Review 55. Boca Raton, Florida, USA, pp. 87−387.
  • Pang, C.Z., Boo, M.V., Ip, Y.K. & Chew, S.F. (2022) Symbiotic dinoflagellates of the giant clam, Tridacna squamosa, express ammonium transporter 2 at the plasma membrane and increase its expression levels during illumination. Frontiers in Marine Science 9, 835574. doi:10.3389/fmars.2022.835574.
  • Rossbach, S., Saderne, V., Anton, A. & Duarte, C.M. (2019) Light-dependent calcification in Red Sea giant clam Tridacna maxima. Biogeosciences 16, 2635–2650.
  • Rossbach, S., Subedi, R.C., Ng, T.K., Ooi, B.S. & Duarte, C.M. (2020) Iridocytes mediate photonic cooperation between giant clams (Tridacninae) and their photosynthetic symbionts. Frontiers in Marine Science 7, 465.
  • Salih, A., Larkum, A., Cox, G., Kühl, M. & Hoegh-Guldberg, O. (2000) Fluorescent pigments in corals are photoprotective. Nature 408, 850–853. doi:10.1038/35048564.
  • Song, H., Mehdi, S.R., Li, Z., Wang, M., Wu, C., Venediktov, V.Y. & Huang, H. (2023) Investigating the rate of turbidity impact on underwater spectral reflectance detection. Frontiers in Marine Science 10, 1031869. doi:10.3389/fmars.2023.1031869.
  • Sparsis, M., Lin, J. & Hagood, R.W. (2001) Growth, survivorship, and nutrient uptake of giant clams (Tridacna) in aquaculture effluent. Journal of Shellfish Research 20, 171–176.
  • Su, Y., Hung, J.H., Kubo, H. & Liu, L.L. (2014) Tridacna noae (Roding, 1798) - a valid giant clam species separated from T. maxima (Roding, 1798) by morphological and genetic data. Raffles Bulletin of Zoology 62, 124–135.
  • Su, P.W., Zhang, G.L., Chen, B., Soong, K. & Liu, L.L. (2021) Reproduction and early juvenile growth of the giant clams Tridacna noae and Tridacna maxima in Taiwan. Zoological Studies 60, e49. doi:10.6620/ZS.2021.60-49.
  • Sweeney, A.M., Holt, A.L., Gagnon, Y. & Morse, D.E. (2012) Giant clam iridocytes optimize photosynthetic symbiosis. Integrative and Comparative Biology 52, E171–E171.
  • Van Wynsberge, S., Andréfouët, S., Gaertner-Mazouni, N., Wabnitz, C.C., Gilbert, A., Remoissenet, G., Payri, C. & Fauvelot, C. (2016) Drivers of density for the exploited giant clam Tridacna maxima: a meta-analysis. Fish and Fisheries 17, 567–584.
  • Wabnitz, C. (2003) From Ocean to Aquarium: the Global Trade in Marine Ornamental Species. UNEP/Earthprint, Cambridge, UK.
  • Wabnitz, C. & Fauvelot, C. (2014) Tridacna noae is back. SPC Fisheries Newsletter 45, 130.
  • Wang, L.H., Liu, Y.H., Ju, Y.M., Hsiao, Y.Y., Fang, L.S. & Chen, C.S. (2008) Cell cycle propagation is driven by light–dark stimulation in a cultured symbiotic dinoflagellate isolated from corals. Coral Reefs 27, 823–835. doi:10.1007/s00338-008-0434-z.
  • Watson, S.A. & Neo, M.L. (2021) Conserving threatened species during rapid environmental change: using biological responses to inform management strategies of giant clams. Conservation Physiology 9, 082. doi:10.1093/conphys/coab082.
  • Wijgerde, T., van Melis, A., Silva, C.I.F., Leal, M.C., Vogels, L., Mutter, C. & Osinga, R. (2014) Red light represses the photophysiology of the scleractinian coral Stylophora pistillata. PLoS One 9, e92781. doi:10.1371/journal.pone.0092781.
  • Yamamoto, T., Tamaki, S., Inoue, K., Iwai, K. & Sudo, Y. (2012) Effects of rearing methods on boring giant clam Tridacna crocea. Aquaculture Science 60, 233–241.
  • Yang, F., Li, L. & Lin, S. (2020) Methylation pattern and expression dynamics of methylase and photosystem genes under varying light intensities in Fugacium kawagutii (Symbiodiniaceae). Journal of Phycology 56, 1738–1747. doi:10.1111/jpy.13070.
  • Zhang, Y., Xiao, S., Li, J., Ma, H., Xiang, Z., Zhang, Y. & Yu, Z. (2016) The artificial breeding and early development of the fluted giant clam (Tridacna squamosa) in South China Sea. Journal of Fisheries of China 40, 1713–1723.
  • Zhang, Y., Zhou, Z., Qin, Y., Li, X., Ma, H., Wei, J., Zhou, Y., Xiao, S., Xiang, Z., Noor, Z., Li, J. & Yu, Z. (2020) Phenotypic traits of two boring giant clam (Tridacna crocea) populations and their reciprocal hybrids in the South China Sea. Aquaculture 519, 734890. doi:10.1016/j.aquaculture.2019.734890.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.