Publication Cover
Amyloid
The Journal of Protein Folding Disorders
Volume 15, 2008 - Issue 1
158
Views
14
CrossRef citations to date
0
Altmetric
Original Article

Potent anti-angiogenic motifs within the Alzheimer β-amyloid peptide

, , , , , , & show all
Pages 5-19 | Published online: 06 Jul 2009

References

  • Gorevic P D, Goni F, Pons-Estel B, Alvarez F, Peress N S, Frangione B. Isolation and partial characterization of neurofibrillary tangles and amyloid plaque core in Alzheimer's disease: immunohistological studies. J Neuropathol Exp Neurol 1986; 45: 647–664
  • Selkoe D J, Abraham C R, Podlisny M B, Duffy L K. Isolation of low-molecular-weight proteins from amyloid plaque fibers in Alzheimer's disease. J Neurochem 1986; 46: 1820–1834
  • Pardridge W M, Vinters H V, Yang J, Eisenberg J, Choi T B, Tourtellotte W W, Huebner V, Shively J E. Amyloid angiopathy of Alzheimer's disease: amino acid composition and partial sequence of a 4,200-dalton peptide isolated from cortical microvessels. J Neurochem 1987; 49: 1394–1401
  • Jellinger K A, Attems J. Prevalence and pathogenic role of cerebrovascular lesions in Alzheimer disease. J Neurol Sci 2005; 229–230: 37–41
  • Paris D, Town T, Parker T, Humphrey J, Mullan M. A beta vasoactivity: an inflammatory reaction. Ann NY Acad Sci 2000; 903: 97–109
  • Johnson N A, Jahng G H, Weiner M W, Miller B L, Chui H C, Jagust W J, Gorno-Tempini M L, Schuff N. Pattern of cerebral hypoperfusion in Alzheimer disease and mild cognitive impairment measured with arterial spin-labeling MR imaging: initial experience. Radiology 2005; 234: 851–859
  • Nicoll J A, Yamada M, Frackowiak J, Mazur-Kolecka B, Weller R O. Cerebral amyloid angiopathy plays a direct role in the pathogenesis of Alzheimer's disease. Pro-CAA position statement. Neurobiol Aging 2004; 25: 589–597
  • Paris D, Quadros A, Humphrey J, Patel N, Crescentini R, Crawford F, Mullan M. Nilvadipine antagonizes both Abeta vasoactivity in isolated arteries, and the reduced cerebral blood flow in APPsw transgenic mice. Brain Res 2004; 999: 53–61
  • Beckmann N, Schuler A, Mueggler T, Meyer E P, Wiederhold K H, Staufenbiel M, Krucker T. Age-dependent cerebrovascular abnormalities and blood flow disturbances in APP23 mice modeling Alzheimer's disease. J Neurosci 2003; 23: 8453–8459
  • Farkas E, Luiten P G. Cerebral microvascular pathology in aging and Alzheimer's disease. Prog Neurobiol 2001; 64: 575–611
  • Wu Z, Guo H, Chow N, Sallstrom J, Bell R D, Deane R, Brooks A I, Kanagala S, Rubio A, Sagare A, Liu D, Li F, Armstrong D, Gasiewicz T, Zidovetzki R, Song X, Hofman F, Zlokovic B V. Role of the MEOX2 homeobox gene in neurovascular dysfunction in Alzheimer disease. Nat Med 2005; 11: 959–965
  • Paris D, Patel N, DelleDonne A, Quadros A, Smeed R, Mullan M. Impaired angiogenesis in a transgenic mouse model of cerebral amyloidosis. Neurosci Lett 2004; 366: 80–85
  • Kouznetsova E, Klingner M, Sorger D, Sabri O, Grossmann U, Steinbach J, Scheunemann M, Schliebs R. Developmental and amyloid plaque-related changes in cerebral cortical capillaries in transgenic Tg2576 Alzheimer mice. Int J Dev Neurosci 2006; 24: 187–193
  • Paris D, Townsend K, Quadros A, Humphrey J, Sun J, Brem S, Wotoczek-Obadia M, DelleDonne A, Patel N, Obregon D F, Crescentini R, Abdullah L, Coppola D, Rojiani A M, Crawford F, Sebti S M, Mullan M. Inhibition of angiogenesis by Abeta peptides. Angiogenesis 2004; 7: 75–85
  • Cantara S, Donnini S, Morbidelli L, Giachetti A, Schulz R, Memo M, Ziche M. Physiological levels of amyloid peptides stimulate the angiogenic response through FGF-2. FASEB J 2004; 18: 1943–1945
  • Gebbink M F, Voest E E, Reijerkerk A. Do antiangiogenic protein fragments have amyloid properties?. Blood 2004; 104: 1601–1605
  • Serpell L C. Alzheimer's amyloid fibrils: structure and assembly. Biochim Biophys Acta 2000; 1502: 16–30
  • Griffioen A W, van der Schaft D W, Barendsz-Janson A F, Cox A, Struijker Boudier H A, Hillen H F, Mayo K H. Anginex, a designed peptide that inhibits angiogenesis. Biochem J 2001; 354: 233–242
  • Dings R P, Arroyo M M, Lockwood N A, van Eijk L I, Haseman J R, Griffioen A W, Mayo K H. Beta-sheet is the bioactive conformation of the anti-angiogenic anginex peptide. Biochem J 2003; 373: 281–288
  • Skovseth D K, Veuger M J, Sorensen D R, De Angelis P M, Haraldsen G. Endostatin dramatically inhibits endothelial cell migration, vascular morphogenesis, and perivascular cell recruitment in vivo. Blood 2005; 105: 1044–1051
  • Paris D, Ait-Ghezala G, Mathura V S, Patel N, Quadros A, Laporte V, Mullan M. Anti-angiogenic activity of the mutant Dutch Aβ peptide on human brain microvascular endothelial cells. Brain Res Mol Brain Res 2005; 136: 212–230
  • Cardin A D, Weintaub H JR. Molecular modeling of protein glycosaminoglycan interactions. Arteriosclerosis 1989; 9: 21–32
  • Snow A D, Kinsella M G, Parks E, Sekiguchi R T, Miller J D, Kimata K, Wight T N. Differential binding of vascular cell-derived proteoglycans (perlecan, biglycan, decorin, and versican) to the beta-amyloid protein of Alzheimer's disease. Arch Biochem Biophys 1995; 320: 84–95
  • McLaurin J, Fraser P E. Effect of amino-acid substitutions on Alzheimer's amyloid-beta peptide-glycosaminoglycan interactions. Eur J Biochem 2000; 267: 6353–6361
  • McKeon J, Holland L A. Determination of dissociation constants for a heparin-binding domain of amyloid precursor protein and heparins or heparan sulfate by affinity capillary electrophoresis. Electrophoresis 2004; 25: 1243–1248
  • Moon J J, Matsumoto M, Patel S, Lee L, Guan J L, Li S. Role of cell surface heparan sulfate proteoglycans in endothelial cell migration and mechanotransduction. J Cell Physiol 2005; 203: 166–176
  • Tkachenko E, Rhodes J M, Simons M. Syndecans: new kids on the signaling block. Circ Res 2005; 96: 488–500
  • Presta M, Dell'Era P, Mitola S, Moroni E, Ronca R, Rusnati M. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 2005; 16: 159–178
  • Leveugle B, Scanameo A, Ding W, Fillit H. Binding of heparan sulfate glycosaminoglycan to beta-amyloid peptide: inhibition by potentially therapeutic polysulfated compounds. Neuroreport 1994; 5: 1389–1392
  • Kisilevsky R, Szarek W A. Novel glycosaminoglycan precursors as anti-amyloid agents part II. J Mol Neurosci 2002; 19: 45–50
  • Morimoto A, Irie K, Murakami K, Masuda Y, Ohigashi H, Nagao M, Fukuda H, Shimizu T, Shirasawa T. Analysis of the secondary structure of beta-amyloid (Abeta42) fibrils by systematic proline replacement. J Biol Chem 2004; 279: 52781–52788
  • Irie K, Murakami K, Masuda Y, Morimoto A, Ohigashi H, Ohashi R, Takegoshi K, Nagao M, Shimizu T, Shirasawa T. Structure of beta-amyloid fibrils and its relevance to their neurotoxicity: implications for the pathogenesis of Alzheimer's disease. J Biosci Bioeng 2005; 99: 437–447
  • Mathura V S, Paris D, Ait-Ghezala G, Quadros A, Patel N S, Kolippakkam D N, Volmar C H, Mullan M J. Model of Alzheimer's disease amyloid-beta peptide based on a RNA binding protein. Biochem Biophys Res Commun 2005; 332: 585–592
  • Olofsson A, Sauer-Eriksson A E, Ohman A. The solvent protection of Alzheimer amyloid-beta-(1–42) fibrils as determined by solution NMR spectroscopy. J Biol Chem 2006; 281: 477–483
  • Clementi M E, Pezzotti M, Orsini F, Sampaolese B, Mezzogori D, Grassi C, Giardina B, Misiti F. Alzheimer's amyloid beta-peptide (1–42) induces cell death in human neuroblastoma via bax/bcl-2 ratio increase: an intriguing role for methionine 35. Biochem Biophys Res Commun 2006; 342: 206–213
  • Misiti F, Sampaolese B, Pezzotti M, Marini S, Coletta M, Ceccarelli L, Giardina B, Clementi M E. Abeta(31–35) peptide induce apoptosis in PC 12 cells: contrast with Abeta(25–35) peptide and examination of underlying mechanisms. Neurochem Int 2005; 46: 575–583
  • Ferreiro E, Resende R, Costa R, Oliveira C R, Pereira C M. An endoplasmic-reticulum-specific apoptotic pathway is involved in prion and amyloid-beta peptides neurotoxicity. Neurobiol Dis 2006; 23: 669–678
  • Magrane J, Christensen R A, Rosen K M, Veereshwarayya V, Querfurth H W. Dissociation of ERK and Akt signaling in endothelial cell angiogenic responses to beta-amyloid. Exp Cell Res 2006; 312: 996–1010
  • van Horssen J, Otte-Holler I, David G, Maat-Schieman M L, van den Heuvel L P, Wesseling P, de Waal R M, Verbeek M M. Heparan sulfate proteoglycan expression in cerebrovascular amyloid beta deposits in Alzheimer's disease and hereditary cerebral hemorrhage with amyloidosis (Dutch) brains. Acta Neuropathol (Berl) 2001; 102: 604–614
  • Rusnati M, Presta M. Interaction of angiogenic basic fibroblast growth factor with endothelial cell heparan sulfate proteoglycans. Biological implications in neovascularization. Int J Clin Lab Res 1996; 26: 15–23
  • Dougher A M, Wasserstrom H, Torley L, Shridaran L, Westdock P, Hileman R E, Fromm J R, Anderberg R, Lyman S, Linhardt R J, Kaplan J, Terman B I. Identification of a heparin binding peptide on the extracellular domain of the KDR VEGF receptor. Growth Factors 1997; 14: 257–268
  • Mousa S A, Mohamed S. Inhibition of endothelial cell tube formation by the low molecular weight heparin, tinzaparin, is mediated by tissue factor pathway inhibitor. Thromb Haemost 2004; 92: 627–633
  • Ashikari-Hada S, Habuchi H, Kariya Y, Kimata K. Heparin regulates vascular endothelial growth factor165-dependent mitogenic activity, tube formation, and its receptor phosphorylation of human endothelial cells. Comparison of the effects of heparin and modified heparins. J Biol Chem 2005; 280: 31508–31515
  • Norrby K. Low-molecular-weight heparins and angiogenesis. APMIS 2006; 114: 79–102
  • Yang S P, Kwon B O, Gho Y S, Chae C B. Specific interaction of VEGF165 with beta-amyloid, and its protective effect on beta-amyloid-induced neurotoxicity. J Neurochem 2005; 93: 118–127
  • Lindahl B, Westling C, Gimenez-Gallego G, Lindahl U, Salmivirta M. Common binding sites for beta-amyloid fibrils and fibroblast growth factor-2 in heparan sulfate from human cerebral cortex. J Biol Chem 1999; 274: 30631–30635
  • Iozzo R V, San Antonio J D. Heparan sulfate proteoglycans: heavy hitters in the angiogenesis arena. J Clin Invest 2001; 108: 349–355
  • Presta M, Dell'Era P, Mitola S, Moroni E, Ronca R, Rusnati M. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 2005; 16: 159–178
  • Sanderson R D, Yang Y, Kelly T, Macleod V, Dai Y, Theus A. Enzymatic remodeling of heparan sulfate proteoglycans within the tumor microenvironment: Growth regulation and the prospect of new cancer therapies. J Cell Biochem 2005; 96: 897–905
  • Castillo G M, Lukito W, Wight T N, Snow A D. The sulfate moieties of glycosaminoglycans are critical for the enhancement of beta-amyloid protein fibril formation. J Neurochem 1999; 72: 1681–1687
  • Cohlberg J A, Li J, Uversky V N, Fink A L. Heparin and other glycosaminoglycans stimulate the formation of amyloid fibrils from alpha-synuclein in vitro. Biochemistry 2002; 41: 1502–1511
  • Kalaria R N, Cohen D L, Premkumar D R, Nag S, LaManna J C, Lust W D. Vascular endothelial growth factor in Alzheimer's disease and experimental cerebral ischemia. Brain Res Mol Brain Res 1998; 62: 101–105
  • Tarkowski E, Issa R, Sjogren M, Wallin A, Blennow K, Tarkowski A, Kumar P. Increased intrathecal levels of the angiogenic factors VEGF and TGF-beta in Alzheimer's disease and vascular dementia. Neurobiol Aging 2002; 23: 237–243
  • Buee L, Hof P R, Delacourte A. Brain microvascular changes in Alzheimer's disease and other dementias. Ann NY Acad Sci 1997; 826: 7–24
  • Slevin M, Krupinski J, Slowik A, Rubio F, Szczudlik A, Gaffney J. Activation of MAP kinase (ERK-1/ERK-2), tyrosine kinase and VEGF in the human brain following acute ischaemic stroke. Neuroreport 2000; 11: 2759–2764
  • Shore P M, Jackson E K, Wisniewski S R, Clark R S, Adelson P D, Kochanek P M. Vascular endothelial growth factor is increased in cerebrospinal fluid after traumatic brain injury in infants and children. Neurosurgery 2004; 54: 605–611
  • Koistinaho M, Kettunen M I, Goldsteins G, Keinanen R, Salminen A, Ort M, Bures J, Liu D, Kauppinen R A, Higgins L S, Koistinaho J. Beta-amyloid precursor protein transgenic mice that harbor diffuse A beta deposits but do not form plaques show increased ischemic vulnerability: role of inflammation. Proc Natl Acad Sci USA 2002; 99: 1610–1615
  • Wen Y, Yang S, Liu R, Brun-Zinkernagel A M, Koulen P, Simpkins J W. Transient cerebral ischemia induces aberrant neuronal cell cycle re-entry and Alzheimer's disease-like tauopathy in female rats. J Biol Chem 2004; 279: 22684–22692
  • Koistinaho M, Koistinaho J. Interactions between Alzheimer's disease and cerebral ischemia – focus on inflammation. Brain Res Brain Res Rev 2005; 48: 240–250

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.