Publication Cover
Amyloid
The Journal of Protein Folding Disorders
Volume 15, 2008 - Issue 1
1,230
Views
34
CrossRef citations to date
0
Altmetric
Original Article

Biochemical and aggregation analysis of Bence Jones proteins from different light chain diseases

&
Pages 29-39 | Published online: 06 Jul 2009

References

  • Roussel A, Spinelli S, Deret S, Navaza J, Aucouturier P, Cambillau C. The structure of an entire noncovalent immunoglobulin kappa light-chain dimer (Bence-Jones protein) reveals a weak and unusual constant domains association. Eur J Biochem 1999; 26: 192–199
  • Gertz M A, Lacy M Q, Dispenzieri A. Amyloidosis. Hematol Oncol Clin North Am 1999; 13: 1211–1233
  • Sezer O, Eucker J, Schmid P, Possinger K. New therapeutic approaches in primary systemic AL amyloidosis. Ann Hematol 2000; 79: 1–6
  • Royer B, Arnulf B, Martinez F, Roy L, Flageul B, Etienne I, Ronco P, Brouet J C, Fermand J P. High dose chemotherapy in light chain or light and heavy chain deposition disease. Kidney Int 2004; 65: 642–648
  • Wetzel R. Domain stability in immunoglobulin light chain deposition disorders. Adv Protein Chem 1997; 50: 183–242
  • Abraham R S, Geyer S M, Price-Troska T L, Allmer C, Kyle R A, Gertz M A, Fonseca R. Immunoglobulin light chain variable (V) region genes influence clinical presentation and outcome in light chain-associated amyloidosis (AL). Blood 2003; 101: 3801–3803
  • Stevens F J, Weiss D T, Solomon A. Structural bases of light chain-related pathology. The Antibodies, M Zanetti, J D Capra. Harwood Academic Publishers. 1999; 5: 175–208
  • Buxbaum J. Mechanisms of disease: monoclonal immunoglobulin deposition. Amyloidosis, light chain deposition disease, and light and heavy chain deposition disease. Hematol Oncol Clin North Am 1992; 6: 323–346
  • Hurle M R, Helms L R, Li L, Chan W, Wetzel R. A role for destabilizing amino acid replacements in light-chain amyloidosis. Proc Natl Acad Sci USA 1994; 91: 5446–5450
  • Perfetti V, Ubbiali P, Vignarelli M C, Diegoli M, Fasani R, Stoppini M, Lisa A, Mangione P, Obici L, Arbustini E, Merlini G. Evidence that amyloidogenic light chains undergo antigen-driven selection. Blood 1998; 91: 2948–2954
  • Pace C N, Scholtz M. Measuring the conformational stability of a protein. Protein Structure A Practical Approach. 2nd ed, T E Creighton. Oxford University Press, New York 1997; 299–321
  • Khurana R, Gillespie J R, Talapatra A, Minert L J, Ionescu-Zanetti C, Millett I, Fink A L. Partially folded intermediates as critical precursors of light chain amyloid fibrils and amorphous aggregates. Biochemistry 2001; 40: 3525–3535
  • Ramirez-Alvarado M, Cocco M J, Regan L. Mutations in the B1 domain of protein G that delay the onset of amyloid fibril formation in vitro. Protein Sci 2003; 12: 567–576
  • Ramirez-Alvarado M, Merkel J S, Regan L. A systematic exploration of the influence of the protein stability on amyloid fibril formation in vitro. Proc Natl Acad Sci USA 2000; 97: 8979–8984
  • Bellotti V, Stoppini M, Mangione P P, Fornasieri A, Min A L, Merlini G, Ferri G. Structural and functional characterization of three human immunoglobulin k light chains with different pathological implications. Biochim Biophys Acta 1996; 1317: 161–167
  • Wall J, Schell M, Murphy C, Hrncic R, Stevens F J, Solomon A. Thermodynamic instability of human lambda 6 light chains: correlation with fibrillogenicity. Biochemistry 1999; 38: 14101–14108
  • Kim Y, Wall J S, Meyer J, Murphy C, Randolph T W, Manning M C, Solomon A, Carpenter J F. Thermodynamic modulation of light chain amyloid fibril formation. J Biol Chem 2000; 275: 1570–1574
  • Goto Y, Fink A L. Conformational states of beta-lactamase: molten-globule states at acidic and alkaline pH with high salt. Biochemistry 1989; 28: 945–952
  • Semisotnov G V, Rodionova N A, Razgulyaev O I, Uversky V N, Gripas A F, Gilmanshin R I. Study of the “molten globule” intermediate state in protein folding by hydrophobic fluorescent probe. Biopolymers 1991; 31: 119–128
  • Fink A L. 8-Anilinonaphthalene-1-Sulfonic Acid. The Encyclopedia of Molecular Biology, T E Creighton. John Wiley and Sons, New York 1999; 140–142
  • Ramirez-Alvarado M, Regan L. Does the location of a mutation determine the ability to form amyloid fibrils?. J Mol Biol 2002; 323: 17–22
  • Lakowicz J R. Protein Fluorescence. Principles of Fluorescence Spectroscopy, 2nd ed. Plenum Publishing Corporation, New York 1999; 445–486
  • Makin O S, Serpell L C. Examining the structure of the mature amyloid fibril. Biochem Soc Trans 2002; 20: 521–525
  • Souillac P O, Uversky V N, Millett I S, Khurana R, Doniach S, Fink A L. Effect of association state and conformational stability on the kinetics of immunoglobulin light chain amyloid fibril formation at physiological pH. J Biol Chem 2002; 277: 12657–12665
  • Souillac P O, Uversky V N, Millett I S, Khurana R, Doniach S, Fink A L. Elucidation of the molecular mechanism during the early events in immunoglobulin light chain amyloid fibrillation. Evidence for an off- pathway oligomer at acidic pH. J Biol Chem 2002; 277: 12666–12679
  • Souillac P O, Uversky V N, Fink A L. Structural transformations of oligomeric intermediates in the fibrillation of immunoglobulin light chain LEN. Biochemistry 2003; 42: 8094–8104
  • Vidal R, Goni F, Stevens F, Aucouturier P, Kumar A, Frangione B, Ghiso J, Gallo G. Somatic mutations of the L12a Gene in V-k1 light chain deposition disease potential effects on aberrant protein conformation and deposition. Am J Pathol 1999; 155: 2009–2017
  • Ramirez-Alvarado M, De Stigter J K, Baden E M, Sikkink L A, McLaughlin R W, Taboas A. Immunoglobulin light chain and systematic AL amyloidosis. Protein Misfolding, Aggregation and Conformational Diseases Part B: Molecular Mechanisms of Conformational Diseases, V N Uversky, A L Fink. Springer, New York 2007; 183–197
  • Branden C, Tooze J. Introduction to protein structure. Garland Publishing Inc., New York 1999; 410