Publication Cover
Amyloid
The Journal of Protein Folding Disorders
Volume 15, 2008 - Issue 3
293
Views
30
CrossRef citations to date
0
Altmetric
Original Article

Identification of fibronectin type I domains as amyloid-binding modules on tissue-type plasminogen activator and three homologs

, , , , , & show all
Pages 166-180 | Published online: 06 Jul 2009

References

  • Syrovets T, Tippler B, Rieks M, Simmet T. Plasmin is a potent and specific chemoattractant for human peripheral monocytes acting via a cyclic guanosine monophosphate-dependent pathway. Blood 1997; 89: 4574–4583
  • Syrovets T, Jendrach M, Rohwedder A, Schule A, Simmet T. Plasmin-induced expression of cytokines and tissue factor in human monocytes involves AP-1 and IKKbeta-mediated NF-kappaB activation. Blood 2001; 97: 3941–3950
  • Baricos W H, Cortez S L, el-Dahr S S, Schnaper H W. ECM degradation by cultured human mesangial cells is mediated by a PA/plasmin/MMP-2 cascade. Kidney Int 1995; 47: 1039–1047
  • Ling C, Zou T, Hsiao Y, Tao X, Chen Z L, Strickland S, Song H. Disruption of tissue plasminogen activator gene reduces macrophage migration. Biochem Biophys Res Commun 2006; 349: 906–912
  • Brodsky S, Chen J, Lee A, Akassoglou K, Norman J, Goligorsky M S. Plasmin-dependent and -independent effects of plasminogen activators and inhibitor-1 on ex vivo angiogenesis. Am J Physiol Heart Circ Physiol 2001; 281: H1784–H1792
  • Syrovets T, Simmet T. Novel aspects and new roles for the serine protease plasmin. Cell Mol Life Sci 2004; 61: 873–885
  • Galantai R, Modos K, Fidy J, Kolev K, Machovich R. Structural basis of the cofactor function of denatured albumin in plasminogen activation by tissue-type plasminogen activator. Biochem Biophys Res Commun 2006; 341: 736–741
  • Bobbink I W, Tekelenburg W L, Sixma J J, de Boer H C, Banga J D, de Groot P G. Glycated proteins modulate tissue-plasminogen activator-catalyzed plasminogen activation. Biochem Biophys Res Commun 1997; 240: 595–601
  • Machovich R, Owen W G. Denatured proteins as cofactors for plasminogen activation. Arch Biochem Biophys 1997; 344: 343–349
  • Haddeland U, Bennick A, Brosstad F. Stimulating effect on tissue-type plasminogen activator – a new and sensitive indicator of denatured fibrinogen. Thromb Res 1995; 77: 329–336
  • Haddeland U, Sletten K, Bennick A, Nieuwenhuizen W, Brosstad F. Aggregated, conformationally changed fibrinogen exposes the stimulating sites for t-PA-catalysed plasminogen activation. Thromb Haemost 1996; 75: 326–331
  • Reijerkerk A, Mosnier L O, Kranenburg O, Bouma B N, Carmeliet P, Drixler T, Meijers J C, Voest E E, Gebbink M F. Amyloid endostatin induces endothelial cell detachment by stimulation of the plasminogen activation system. Mol Cancer Res 2003; 1: 561–568
  • Kranenburg O, Bouma B, Kroon-Batenburg L M, Reijerkerk A, Wu Y P, Voest E E, Gebbink M F. Tissue-type plasminogen activator is a multiligand cross-beta structure receptor. Curr Biol 2002; 12: 1833–1839
  • Maas C, Hermeling S, Bouma B, Jiskoot W, Gebbink M F. A role for protein misfolding in immunogenicity of biopharmaceuticals. J Biol Chem 2007; 282: 2229–2236
  • Herczenik E, Bouma B, Korporaal S J, Strangi R, Zeng Q, Gros P, Van E M, Van Berkel T J, Gebbink M F, Akkerman J W. Activation of human platelets by misfolded proteins. Arterioscler Thromb Vasc Biol 2007; 27: 1657–1665
  • Ursini F, Davies K J, Maiorino M, Parasassi T, Sevanian A. Atherosclerosis: another protein misfolding disease?. Trends Mol Med 2002; 8: 370–374
  • Lee J Y, Kweon H S, Cho E, Lee J Y, Byun H R, Kim D H, Kim Y H, Han P L, Koh J Y. Upregulation of tPA/plasminogen proteolytic system in the periphery of amyloid deposits in the Tg2576 mouse model of Alzheimer's disease. Neurosci Lett 2007; 423: 82–87
  • Melchor J P, Pawlak R, Strickland S. The tissue plasminogen activator-plasminogen proteolytic cascade accelerates amyloid-beta (Abeta) degradation and inhibits Abeta-induced neurodegeneration. J Neurosci 2003; 23: 8867–8871
  • Periz G, Fortini M E. Proteolysis in Alzheimer's disease. Can plasmin tip the balance?. EMBO Rep 2000; 1: 477–478
  • Siao C J, Tsirka S E. Tissue plasminogen activator mediates microglial activation via its finger domain through annexin II. J Neurosci 2002; 22: 3352–3358
  • Tucker H M, Kihiko-Ehmann M, Wright S, Rydel R E, Estus S. Tissue plasminogen activator requires plasminogen to modulate amyloid-beta neurotoxicity and deposition. J Neurochem 2000; 75: 2172–2177
  • Tucker H M, Kihiko M, Caldwell J N, Wright S, Kawarabayashi T, Price D, Walker D, Scheff S, McGillis J P, Rydel R E, Estus S. The plasmin system is induced by and degrades amyloid-beta aggregates. J Neurosci 2000; 20: 3937–3946
  • Xanthopoulos K, Paspaltsis I, Apostolidou V, Petrakis S, Siao C J, Kalpatsanidis A, Grigoriadis N, Tsaftaris A, Tsirka S E, Sklaviadis T. Tissue plasminogen activator in brain tissues infected with transmissible spongiform encephalopathies. Neurobiol Dis 2005; 20: 519–527
  • Jaroniec C P, MacPhee C E, Astrof N S, Dobson C M, Griffin R G. Molecular conformation of a peptide fragment of transthyretin in an amyloid fibril. Proc Natl Acad Sci U S A 2002; 99: 16748–16753
  • Yamada M, Kadoya Y, Kasai S, Kato K, Mochizuki M, Nishi N, Watanabe N, Kleinman H K, Yamada Y, Nomizu M. Ile-Lys-Val-Ala-Val (IKVAV)-containing laminin alpha1 chain peptides form amyloid-like fibrils. FEBS Lett 2002; 530: 48–52
  • Schielen J G, Adams H P, Voskuilen M, Tesser G J, Nieuwenhuizen W. Structural requirements of position A alpha-157 in fibrinogen for the fibrin-induced rate enhancement of the activation of plasminogen by tissue-type plasminogen activator. Biochem J 1991; 276: 655–659
  • Johannessen M, Diness V, Pingel K, Petersen L C, Rao D, Lioubin P, O'Hara P, Mulvihill E. Fibrin affinity and clearance of t-PA deletion and substitution analogues. Thromb Haemost 1990; 63: 54–59
  • Gebbink M F, Zondag G C, Koningstein G M, Feiken E, Wubbolts R W, Moolenaar W H. Cell surface expression of receptor protein tyrosine phosphatase RPTP mu is regulated by cell-cell contact. J Cell Biol 1995; 131: 251–260
  • van Zonneveld A J, Veerman H, Pannekoek H. On the interaction of the finger and the kringle-2 domain of tissue-type plasminogen activator with fibrin. Inhibition of kringle-2 binding to fibrin by epsilon-amino caproic acid. J Biol Chem 1986; 261: 14214–14218
  • Rostagno A, Williams M J, Baron M, Campbell I D, Gold L I. Further characterization of the NH2-terminal fibrin-binding site on fibronectin. J Biol Chem 1994; 269: 31938–31945
  • Rostagno A A, Schwarzbauer J E, Gold L I. Comparison of the fibrin-binding activities in the N- and C-termini of fibronectin. Biochem J 1999; 338: 375–386
  • Schnolzer M, Alewood P, Jones A, Alewood D, Kent S B. In situ neutralization in Boc-chemistry solid phase peptide synthesis. Rapid, high yield assembly of difficult sequences. Int J Pept Protein Res 1992; 40: 180–193
  • Dawson P E, Muir T W, Clark-Lewis I, Kent S B. Synthesis of proteins by native chemical ligation. Science 1994; 266: 776–779
  • Hackeng T M, Griffin J H, Dawson P E. Protein synthesis by native chemical ligation: expanded scope by using straightforward methodology. Proc Natl Acad Sci USA 1999; 96: 10068–10073
  • Bobbink I W, de Boer H C, Tekelenburg W L, Banga J D, de Groot P G. Effect of extracellular matrix glycation on endothelial cell adhesion and spreading: involvement of vitronectin. Diabetes 1997; 46: 87–93
  • Renne T, Pozgajova M, Gruner S, Schuh K, Pauer H U, Burfeind P, Gailani D, Nieswandt B. Defective thrombus formation in mice lacking coagulation factor XII. J Exp Med 2005; 202: 271–281
  • Renne T, Nieswandt B, Gailani D. The intrinsic pathway of coagulation is essential for thrombus stability in mice. Blood Cells Mol Dis 2006; 36: 148–151
  • Miyazawa K, Shimomura T, Kitamura N. Activation of hepatocyte growth factor in the injured tissues is mediated by hepatocyte growth factor activator. J Biol Chem 1996; 271: 3615–3618
  • Itoh H, Naganuma S, Takeda N, Miyata S, Uchinokura S, Fukushima T, Uchiyama S, Tanaka H, Nagaike K, Shimomura T, Miyazawa K, Yamada G, Kitamura N, Koono M, Kataoka H. Regeneration of injured intestinal mucosa is impaired in hepatocyte growth factor activator-deficient mice. Gastroenterology 2004; 127: 1423–1435
  • Matsubara Y, Ichinose M, Yahagi N, Tsukada S, Oka M, Miki K, Kimura S, Omata M, Shiokawa K, Kitamura N, Kaneko Y, Fukamachi H. Hepatocyte growth factor activator: a possible regulator of morphogenesis during fetal development of the rat gastrointestinal tract. Biochem Biophys Res Commun 1998; 253: 477–484
  • Maas C, Govers-Riemslag J WP, Bouma B, Schiks B, Hazenberg B PC, Lokhorst H M, Hammarstrõm P, ten Cate H, de Groot P G, Bouma B N, Gebbink M FBG. Factor XII is activated by misfolded proteins, which leads to kallikrein formation without initiating coagulation. J Clin Invest 2008, in press
  • Shibayama Y, Joseph K, Nakazawa Y, Ghebreihiwet B, Peerschke E I, Kaplan A P. Zinc-dependent activation of the plasma kinin-forming cascade by aggregated beta amyloid protein. Clin Immunol 1999; 90: 89–99
  • Bouma B, Kroon-Batenburg L M, Wu Y P, Brunjes B, Posthuma G, Kranenburg O, de Groot P G, Voest E E, Gebbink M F. Glycation induces formation of amyloid cross-beta structure in albumin. J Biol Chem 2003; 278: 41810–41819
  • Mao Y, Ootaka T, Saito T, Sato H, Sato T, Ito S. The involvement of advanced glycation endproducts (AGEs) in renal injury of diabetic glomerulosclerosis: association with phenotypic change in renal cells and infiltration of immune cells. Clin Exp Nephrol 2003; 7: 201–209
  • Hudry-Clergeon G, Freyssinet J M, Torbet J, Marx J. Orientation of fibrin in strong magnetic fields. Ann N Y Acad Sci 1983; 408: 380–387
  • Downing A K, Driscoll P C, Harvey T S, Dudgeon T J, Smith B O, Baron M, Campbell I D. Solution structure of the fibrin binding finger domain of tissue-type plasminogen activator determined by 1H nuclear magnetic resonance. J Mol Biol 1992; 225: 821–833
  • Ledesma M D, Da Silva J S, Crassaerts K, Delacourte A, De S B, Dotti C G. Brain plasmin enhances APP alpha-cleavage and Abeta degradation and is reduced in Alzheimer's disease brains. EMBO Rep 2000; 1: 530–535
  • Paul J, Strickland S, Melchor J P. Fibrin deposition accelerates neurovascular damage and neuroinflammation in mouse models of Alzheimer's disease. J Exp Med 2007; 204: 1999–2008
  • Van Nostrand W E, Melchor J, Wagner M, Davis J. Cerebrovascular smooth muscle cell surface fibrillar A beta. Alteration of the proteolytic environment in the cerebral vessel wall. Ann N Y Acad Sci 2000; 903: 89–96
  • Medina M G, Ledesma M D, Dominguez J E, Medina M, Zafra D, Alameda F, Dotti C G, Navarro P. Tissue plasminogen activator mediates amyloid-induced neurotoxicity via Erk1/2 activation. EMBO J 2005; 24: 1706–1716
  • Yasuhara O, Walker D G, McGeer P L. Hageman factor and its binding sites are present in senile plaques of Alzheimer's disease. Brain Res 1994; 654: 234–240
  • Bergamaschini L, Parnetti L, Pareyson D, Canziani S, Cugno M, Agostoni A. Activation of the contact system in cerebrospinal fluid of patients with Alzheimer disease. Alzheimer Disease & Associated Disorders 1998; 12: 102–108
  • Bergamaschini L, Donarini C, Gobbo G, Parnetti L, Gallai V. Activation of complement and contact system in Alzheimer's disease. Mech Ageing Develop 2001; 122: 1971–1983
  • Miklossy J, Taddei K, Martins R, Escher G, Kraftsik R, Pillevuit O, Lepori D, Campiche M. Alzheimer disease: curly fibers and tangles in organs other than brain. J Neuropathol Exp Neurol 1999; 58: 803–814
  • van Duinen S G, Maat-Schieman M L, Bruijn J A, Haan J, Roos R A. Cortical tissue of patients with hereditary cerebral hemorrhage with amyloidosis (Dutch) contains various extracellular matrix deposits. Lab Invest 1995; 73: 183–189
  • Yamada T, Tsujioka Y, Taguchi J, Takahashi M, Tsuboi Y, Shimomura T. White matter astrocytes produce hepatocyte growth factor activator inhibitor in human brain tissues. Exp Neurol 1998; 153: 60–64
  • Shikano M, Kushimoto H, Hasegawa H, Tomita M, Hasegawa M, Murakami K, Kawashima S. Usefulness of serum hepatocyte growth factor for the diagnosis of amyloidosis. Intern Med 2000; 39: 715–719
  • Williams M J, Phan I, Baron M, Driscoll P C, Campbell I D. Secondary structure of a pair of fibronectin type 1 modules by two-dimensional nuclear magnetic resonance. Biochemistry 1993; 32: 7388–7395
  • Limper A H, Quade B J, LaChance R M, Birkenmeier T M, Rangwala T S, McDonald J A. Cell surface molecules that bind fibronectin's matrix assembly domain. J Biol Chem 1991; 266: 9697–9702
  • Hocking D C, Sottile J, Keown-Longo P J. Fibronectin's III-1 module contains a conformation-dependent binding site for the amino-terminal region of fibronectin. J Biol Chem 1994; 269: 19183–19187
  • Ohashi T, Erickson H P. Domain unfolding plays a role in superfibronectin formation. J Biol Chem 2005; 280: 39143–39151
  • Ingham K C, Brew S A, Huff S, Litvinovich S V. Cryptic self-association sites in type III modules of fibronectin. J Biol Chem 1997; 272: 1718–1724
  • Litvinovich S V, Brew S A, Aota S, Akiyama S K, Haudenschild C, Ingham K C. Formation of amyloid-like fibrils by self-association of a partially unfolded fibronectin type III module. J Mol Biol 1998; 280: 245–258
  • Schlunegger M P, Bennett M J, Eisenberg D. Oligomer formation by 3D domain swapping: a model for protein assembly and misassembly. Adv Protein Chem 1997; 50: 61–122
  • Bennett M J, Schlunegger M P, Eisenberg D. 3D domain swapping: a mechanism for oligomer assembly. Protein Sci 1995; 4: 2455–2468
  • Schwarz-Linek U, Pilka E S, Pickford A R, Kim J H, Hook M, Campbell I D, Potts J R. High affinity streptococcal binding to human fibronectin requires specific recognition of sequential F1 modules. J Biol Chem 2004; 279: 39017–39025
  • Sagare A, Deane R, Bell R D, Johnson B, Hamm K, Pendu R, Marky A, Lenting P J, Wu Z, Zarcone T, Goate A, Mayo K, Perlmutter D, Coma M, Zhong Z, Zlokovic B V. Clearance of amyloid-beta by circulating lipoprotein receptors. Nat Med 2007; 13: 1029–1031
  • Bu G, Cam J, Zerbinatti C. LRP in amyloid-beta production and metabolism. Ann N Y Acad Sci 2006; 1086: 35–53
  • Donahue J E, Flaherty S L, Johanson C E, Duncan JA, III, Silverberg G D, Miller M C, Tavares R, Yang W, Wu Q, Sabo E, Hovanesian V, Stopa E G. RAGE, LRP-1, and amyloid-beta protein in Alzheimer's disease. Acta Neuropathol (Berl) 2006; 112: 405–415

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.