Publication Cover
Amyloid
The Journal of Protein Folding Disorders
Volume 15, 2008 - Issue 3
97
Views
11
CrossRef citations to date
0
Altmetric
Original Article

Do amyloid oligomers act as traps for misfolded proteins? A hypothesis

Pages 160-165 | Published online: 06 Jul 2009

References

  • Stefani M, Dobson C M. Protein aggregation and aggregate toxicity: new insight into protein folding, misfolding diseases and biological evolution. J Mol Med 2003; 81: 678–699
  • Sawaya M R, Sambashivan S, Nelson R, Ivanova M I, Sievers S A, Apostol M I, Thompson M J, Balbirnie M, Wiltzius J JW, McFarlane H T, Madsen A O, Riekel C, Eisenberg D. Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature 2007; 447: 453–457
  • Knowles R B, Wyart C, Buldyrev S V, Cruz L, Urbanc B, Hasselmo M E, Stanley H E, Hyman B T. Plaque-induced neurite abnormalities: Implications for disruption of neural networks in Alzheimer's disease. Proc Natl Acad Sci USA 1999; 96: 5274–5279
  • Novitskaya V, Bocharova O V, Bronstein I, Baskarov I V. Amyloid fibrils of prion protein are highly toxic to cultured cells and primary neurons. J Biol Chem 2006; 281: 13828–13836
  • Ferreira S T, Vieira M NN, De Felice F G. Soluble protein oligomers as emerging toxins in Alzheimer's and other amyloid diseases. Life 2007; 59: 332–345
  • Walsh D M, Selkoe D J. A beta oligomers – a decade of discovery. J Neurochem 2007; 101: 1172–1184
  • Agorogiannis E I, Agorogiannis G I, Papadimitriou A, Hadjigeorgiou G M. Protein misfolding in neurodegenerative diseases. Neuropath Appl Neurobiol 2004; 30: 215–224
  • Meredith S C. Protein denaturation and aggregation – cellular responses to denatured and aggregated proteins. Ann NY Acad Sci 2005; 1066: 181–221
  • Pollard H B, Arispe N, Rojas E. Ion channel hypothesis for Alzheimer amyloid peptide neurotoxicity. Cell Mol Neurobiol 1995; 15: 513–526
  • Kagan B L, Hirakura Y, Azimov R, Azimova R, Lin M C. The channel hypothesis of Alzheimer's disease: current status. Peptides 2002; 23: 1311–1315
  • Gregori L, Hainfeld J F, Simon M N, Goldgaber D. Binding of amyloid beta protein to the 20 S proteasome. J Biol Chem 1997; 272: 58–62
  • Keller J N, Hanni K B, Markesbery W R. Impaired proteasome function in Alzheimer's disease. J Neurochem 2000; 75: 436–439
  • Chen Q H, Liu J B, Horak K M, Zheng H Q, Kumarapeli A RK, Li J, Li F Q, Gerdes A M, Wawrousek E F, Wang X J. Intrasarcoplasmic amyloidosis impairs proteolytic function of proteasomes in cardiomyocytes by compromising substrate uptake. Circ Res 2005; 97: 1018–1026
  • Deshpande A, Mina E, Glabe C, Busciglio J. Different conformations of amyloid beta induce neurotoxicity by distinct mechanisms in human cortical neurons. J Neurosci 2006; 26: 6011–6018
  • Watson D, Castano E, Kokjohn T A, Kuo Y M, Lyubchenko Y, Pinsky D, Connolly Jr E S, Esh C, Luehrs D C, Stine W B, Rowse L M, Emmerling M R, Roher A E. Physicochemical characteristics of soluble oligomeric Aβ and their pathologic role in Alzheimer's disease. Neurolog Res 2005; 27: 869–881
  • Nagai Y, Inui Y, Popiel H A, Fujikake N, Hasegawa K, Urade Y, Goto Y, Naiki H, Toda T. A toxic monomeric conformer of the polyglutamine protein. Nat Struct Mol Biol 2007; 14: 332–340
  • Huang T HJ, Yang D S, Plaskos N P, Go S, Yip C M, Fraser P E, Chakrabartty A. Structural studies of soluble oligomers of the Alzheimer beta-amyloid peptide. J Mol Biol 2000; 297: 73–87
  • Dusa A, Kaylor J, Edridge S, Bodner N, Hong D P, Fink A L. Characterization of oligomers during α-synuclein aggregation using intrinsic tryptophan fluorescence. Biochemistry 2006; 45: 2752–2760
  • Fawzi N L, Okabe Y, Yap E H, Head-Gordon T. Determining the critical nucleus and mechanism of fibril elongation of the Alzheimer's Aβ1-40 peptide. J Mol Biol 2007; 365: 535–550
  • Kayed R, Glabe C G. Conformation-dependent anti-amyloid oligomer antibodies. Science 2003; 300: 486–489
  • Jahn T R, Radford S E. Folding versus aggregation: polypeptide conformations on competing pathways. Arch Biochem Biophys 2008; 469: 100–117
  • Richardson J S, Richardson D C. Natural β-sheet proteins use negative design to avoid edge-to-edge aggregation. Proc Natl Acad Sci USA 2002; 99: 2754–2759
  • Rajan R S, Illing M E, Bence N F, Kopito R R. Specificity in intracellular protein aggregation and inclusion body formation. Proc Natl Acad Sci USA 2001; 98: 13060–13065
  • Perutz M F, Johnson T, Suzuki M, Finch J T. Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc Natl Acad Sci USA 1994; 91: 5355–5358
  • Meyer-Luehmann M, Coomaraswamy J, Bolmont T, Kaeser S, Schaefer C, Kilger E, Neuenschwander A, Abramowski D, Frey P, Jaton A L, Vigouret J M, Paganetti P, Walsh D M, Matthews P M, Ghiso J, Staufenbiel M, Walker L C, Jucker M. Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 2006; 313: 1781–1784
  • Ghribi O. The role of the endoplasmic reticulum in the accumulation of β-amyloid peptide in Alzheimer's disease. Curr Mol Med 2006; 6: 119–133
  • Hetz C, Castilla J, Soto C. Perturbation of endoplasmic reticulum homeostasis facilitates prion replication. J Biol Chem 2007; 282: 12725–12733
  • Wang X, Robbins J. Heart failure and protein quality control. Circ Res 2006; 99: 1315–1328
  • Cook D G, Forman M S, Sung J C, Leight S, Kolson D L, Iwatsubo T, Lee V MY, Doms R W. Alzheimer's Aβ (1-42) is generated in the endoplasmic reticulum/intermediate compartment of NT2N cells. Nature Med 1997; 3: 1021–1023
  • Schmitz A, Schneider A, Kummer M P, Herzog V. Endoplasmic reticulum-localized amyloid β-peptide is degraded in the cytosol by two distinct degradation pathways. Traffic 2004; 5: 89–101
  • Schubert U, Anton L C, Gibbs J, Norbury C C, Yewdell J W, Bennink J R. Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 2000; 404: 770–774
  • Gregori L, Fuchs C, Figueiredo-Pereira M E, Van Nostrand W E, Goldgaber D. Amyloid β-protein inhibits ubiquitin-dependent protein degradation in vitro. J Biol Chem 1995; 270: 19702–19708
  • Holmberg C I, Staniszewski K E, Mensah K N, Matouschek A, Morimoto R I. Inefficient degradation of truncated polyglutamine proteins by the proteasome. EMBO J 2004; 23: 4307–4318
  • Kristiansen M, Deriziotis P, Dimcheff D E, Jackson G S, Ovaa H, Naumann H, Clarke A R, van Leeuwen F WB, Menendez-Benito V, Dantuma N P, Portis J L, Collinge J, Tabrizi S J. Disease-associated prion protein oligomers inhibit the 26S proteasome. Mol Cell 2007; 26: 175–188
  • Shang F, Dudek E, Liu Q, Boulton M E, Taylor A. Protein quality control by the ubiquitin proteolytic pathway: roles in resistance to oxidative stress and disease. Israel J Chem 2006; 46: 145–158
  • Sherman M Y, Goldberg A L. Cellular defenses against unfolded proteins. A cell biologist thinks about neurodegenerative diseases. Neuron 2001; 29: 15–32
  • Perez A, Morelli L, Cresto J C, Castano E M. Degradation of soluble amyloid beta-peptides 1–40, 1–42, and the Dutch variant 1–40Q by insulin degrading enzyme from Alzheimer disease and control brains. Neurochem Res 2000; 25: 247–255
  • Yasojima K, Akiyama H, McGeer E G, McGeer P L. Reduced neprilysin in high plaque areas of Alzheimer brain: a possible relationship to deficient degradation of beta-amyloid peptide. Neurosci Lett 2001; 297: 97–100
  • Suen K C, Lin K F, Elyaman W, So K F, Chang R CC, Hugon J. Reduction of calcium release from the endoplasmic reticulum could only provide partial neuroprotection against beta-amyloid peptide toxicity. J Neurochem 2003; 87: 1413–1426
  • Goldfarb L G, Vicart P, Goebel H H, Dalakas M C. Desmin myopathy. Brain 2004; 127: 723–734
  • Cummings C J, Mancini M A, Antalffy B, DeFranco D B, Orr H T, Zoghbi H Y. Chaperone suppression of aggregation and altered subcellular proteasome localization imply protein misfolding in SCA1. Nature Genet 1998; 19: 148–154
  • Perry G, Friedman R, Shaw G, Chau V. Ubiquitin is detected in neurofibrillary tangles and senile plaque neurites of Alzheimer disease brains. Proc Natl Acad Sci USA 1987; 84: 3033–3036
  • Fonte V, Kapulkin V, Taft A, Fluet A, Friedman D, Link C D. Interaction of intracellular β amyloid peptide with chaperone proteins. Proc Natl Acad Sci USA 2002; 99: 9439–9444
  • Suhr S T, Senut M C, Whitelegge J P, Faull K F, Cuizon D B, Gage F H. Identities of sequestered proteins in aggregates from cells with induced polyglutamine expression. J Chem Biol 2001; 153: 283–294
  • Gildalevitz T, Ben-Zvi A, Ho K H, Brignull H R, Morimoto R I. Progressive disruption of cellular protein folding in models of polyglutamine diseases. Science 2006; 311: 1471–1474
  • Mukai H, Isagawa T, Goyama E, Tanaka S, Bence N F, Tamura A, Ono Y, Kopito R R. Formation of morphologically similar globular aggregates from diverse aggregation-prone proteins in mammalian cells. Proc Natl Acad Sci USA 2005; 102: 10887–10892
  • Hussain I, Hawkins J, Harrison D, Hille C, Wayne G, Cutler L, Buck T, Walter D, Demont E, Howes C, Naylor A, Jeffrey P, Gonzalez M I, Dingwall C, Michel A, Reshaw S, Davis J B. Oral administration of a potent and selective non-peptidic BACE-1 inhibitor decreases beta-cleavage of amyloid precursor protein and amyloid-beta production in vivo. J Neurochem 2007; 100: 802–809
  • Sadowski M J, Pankiwicz J, Scholtzova H, Mehta P D, Prelli F, Quartermain D, Wisniewski T. Blocking the apolipoprotein E/amyloid-beta interaction as a potential therapeutic approach for Alzheimer's disease. Proc Natl Acad Sci USA 2006; 103: 18787–18792
  • Evin G, Sernee M F, Masters C L. Inhibition of gamma-secretase as a therapeutic intervention for Alzheimer's disease – prospects, limitations and strategies. CNS Drugs 2006; 20: 351–372
  • Chan C S, Guzman J N, Ilijic E, Mercer J N, Rick C, Tkatch T, Meredith G E, Surmeier D J. ‘Rejuvenation’ protects neurons in mouse models of Parkinson's disease. Nature 2007; 447: 1081–1086
  • Mattson M P. Calcium and neurodegeneration. Aging Cell 2007; 6: 337–350
  • Muchowski P J, Wacker J L. Modulation of neurodegeneration by molecular chaperones. Nature Rev Neurosci 2005; 6: 11–22
  • Hoshino T, Nakaya T, Araki W, Suzuki K, Suzuki T, Mizushima T. Endoplasmic reticulum chaperones inhibit the production of amyloid-beta peptides. Biochem J 2007; 402: 581–589
  • Sanbe A, Osinska H, Villa C, Gulick J, Klevitsky R, Glabe C G, Kayed R, Robbins J. Reversal of amyloid-induced heart disease in desmin-related cardiomyopathy. Proc Natl Acad Sci USA 2005; 102: 13592–13597
  • Barral J M, Broadley S A, Schaffar G, Hartl F U. Roles of molecular chaperones in protein misfolding diseases. Semin Cell Dev Biol 2004; 15: 17–29
  • Zobel A TC, Loranger A, Marceau N, Theriault J R, Lambert H, Landry J. Distinct chaperone mechanisms can delay the formation of aggresomes by the myopathy-causing R120G alpha B-crystallin mutant. Human Mol Genet 2003; 12: 1609–1620

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.