Publication Cover
Amyloid
The Journal of Protein Folding Disorders
Volume 16, 2009 - Issue 2
248
Views
32
CrossRef citations to date
0
Altmetric
Original Article

Overcoming synthetic Aβ peptide aging: a new approach to an age-old problem

, , , , , & show all
Pages 71-80 | Published online: 13 Aug 2009

References

  • Dobson C M. Experimental investigation of protein folding and misfolding. Methods 2004; 34: 4–14
  • Harper J D, Wong S S, Lieber C M, Lansbury P T. Observation of metastable Aβ amyloid protofibrils by atomic force microscopy. Chem Biol 1997; 4: 119–125
  • Walsh D M, Lomakin A, Benedek G B, Condron M M, Teplow D B. Amyloid β-protein fibrillogenesis. Detection of a protofibrillar intermediate. J Biol Chem 1997; 272: 22364–22372
  • Lambert M P, Barlow A K, Chromy B A, Edwards C, Freed R, Liosatos M, Morgan T E, Rozovsky I, Trommer B, Viola K L, Wals P, Zhang C, Finch C E, Krafft G A, Klein W L. Diffusible, nonfibrillar ligands derived from Aβ1–42 are potent central nervous system neurotoxins. Proc Natl Acad Sci USA 1998; 95: 6448–6453
  • Lambert M P, Viola K L, Chromy B A, Chang L, Morgan T E, Yu J, Venton D L, Krafft G A, Finch C E, Klein W L. Vaccination with soluble Aβ oligomers generates toxicity-neutralizing antibodies. J Neurochem 2001; 79: 595–605
  • Kirkitadze M D, Bitan G, Teplow D B. Paradigm shifts in Alzheimer's disease and other neurodegenerative disorders: the emerging role of oligomeric assemblies. J Neurosci Res 2002; 69: 567–577
  • Glenner G G, Wong C W. Alzheimer's disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 1984; 120: 885–890
  • Wong C W, Quaranta V, Glenner G G. Neuritic plaques and cerebrovascular amyloid in Alzheimer disease are antigenically related. Proc Natl Acad Sci USA 1985; 82: 8729–8732
  • Joachim C L, Duffy L K, Morris J H, Selkoe D J. Protein chemical and immunocytochemical studies of meningovascular β-amyloid protein in Alzheimer's disease and normal aging. Brain Res 1988; 474: 100–111
  • Prelli F, Castaño E, Glenner G G, Frangione B. Differences between vascular and plaque core amyloid in Alzheimer's disease. J Neurochem 1988; 51: 648–651
  • Kang J, Lemaire H G, Unterbeck A, Salbaum J M, Masters C L, Grzeschik K H, Multhaup G, Beyreuther K, Müller-Hill B. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature 1987; 325: 733–736
  • Dyrks T, Weidemann A, Multhaup G, Salbaum J M, Lemaire H G, Kang J, Müller-Hill B, Masters C L, Beyreuther K. Identification, transmembrane orientation and biogenesis of the amyloid A4 precursor of Alzheimer's disease. EMBO J 1988; 7: 949–957
  • Esch F S, Keim P S, Beattie E C, Blacher R W, Culwell A R, Oltersdorf T, McClure D, Ward P J. Cleavage of amyloid β-peptide during constitutive processing of its precursor. Science 1990; 248: 1122–1124
  • Selkoe D J. Alzheimer's disease: genes, proteins, and therapy. Physiol Rev 2001; 81: 741–766
  • Gorevic P D, Castaño E M, Sarma R, Frangione B. Ten to fourteen residue peptides of Alzheimer's disease protein are sufficient for amyloid fibril formation and its characteristic X-ray diffraction pattern. Biochem Biophys Res Commun 1987; 147: 854–862
  • Kirschner D A, Inouye H, Duffy L K, Sinclair A, Lind M, Selkoe D J. Synthetic peptide homologous to β protein from Alzheimer disease forms amyloid-like fibrils in vitro. Proc Natl Acad Sci USA 1987; 84: 6953–6957
  • Burdick D, Soreghan B, Kwon M, Kosmoski J, Knauer M, Henschen A, Yates J, Cotman C, Glabe C. Assembly and aggregation properties of synthetic Alzheimer's A4/β amyloid peptide analogs. J Biol Chem 1992; 267: 546–554
  • Teplow D B. Preparation of amyloid β-protein for structural and functional studies. In: Kheterpal I, Wetzel R, editors. Methods in enzymology, amyloid, prions, and other protein aggregates. 2006; 20–33
  • M Ruvo, Rossi, F, Palladino, P, Benedetti, E, Pedone, C. Syntesis of “difficult sequences” of highly aggregating peptides. Proceedings of the 27th European Peptide Symposium held in Sorrento. Napoli, Ziino publisher. 2002
  • Salmona M, Morbin M, Massignan T, Colombo L, Mazzoleni G, Capobianco R, Diomede L, Thaler F, Mollica L, Musco G, Kourie J J, Bugiani O, Sharma D, Inouye H, Kirschner D A, Forloni G, Tagliavini F. Structural properties of Gerstmann-Sträussler-Scheinker disease amyloid protein. J Biol Chem 2003; 278: 48146–48153
  • Gobbi M, Colombo L, Morbin M, Mazzoleni G, Accardo E, Vanoni M, Del Favero E, Cantù L, Kirschner D A, Manzoni C, Beeg M, Ceci P, Ubezio P, Forloni G, Tagliavini F, Salmona M. Gerstmann-Sträussler-Scheinker disease amyloid protein polymerizes according to the “Dock-and-Lock” model. J Biol Chem 2006; 281: 843–849
  • Corti M. The laser light scattering technique and its application to micellar solutions. V Degiorgio, M Corti. Amsterdam, North-Holland 1985; 122–151
  • Lago P, Rovati L, Cantù L, Corti M A. Quasielastic light scattering detector for chromatographic analysis. Rev Sci Instr 1993; 64: 1797–1802
  • Jarrett J T, Berger E P, Lansbury P T. The carboxy terminus of the β amyloid protein is critical for the seeding of amyloid formation: implications for the pathogenesis of Alzheimer's disease. Biochemistry 1993; 32: 4693–4697
  • Roher A, Wolfe D, Palutke M, KuKuruga D. Purification, ultrastructure, and chemical analysis of Alzheimer disease amyloid plaque core protein. Proc Natl Acad Sci USA 1986; 83: 2662–2666
  • LeVine H. Thioflavine T interaction with synthetic Alzheimer's disease β-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci 1993; 2: 404–410
  • Yankner B A, Dawes L R, Fisher S, Villa-Komaroff L, Oster-Granite M L, Neve R L. Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer's disease. Science 1989; 245: 417–420
  • Yankner B A, Duffy L K, Kirschner D A. Neurotrophic and neurotoxic effects of amyloid β protein: reversal by tachykinin neuropeptides. Science 1990; 250: 279–282
  • Simmons L K, May P C, Tomaselli K J, Rydel R E, Fuson K S, Brigham E F, Wright S, Lieberburg I, Becker G W, Brems D N, Li W Y. Secondary structure of amyloid β peptide correlates with neurotoxic activity in vitro. Mol Pharmacol 1993; 45: 373–379
  • Howlett D R, Jennings K H, Lee D C, Clark M SG, Brown F, Wetzel R, Wood S J, Camilleri P, Roberts G W. Aggregation state and neurotoxic properties of Alzheimer β-amyloid peptide. Neurodegeneration 1995; 4: 23–32
  • Pike C J, Walencewicz A J, Glabe C G, Cotman C W. Aggregation-related toxicity of synthetic β-amyloid protein in hippocampal cultures. Eur J Pharmacol–Mol Pharm Sec 1991; 207: 367–368
  • Pike C J, Walencewicz A J, Glabe C G, Cotman C W. In vitro aging of β-amyloid protein causes peptide aggregation and neurotoxicity. Brain Res 1991; 563: 311–314
  • Pike C J, Burdick D, Walencewicz A J, Glabe C G, Cotman C W. Neurodegeneration induced by β-amyloid peptides in vitro: the role of peptide assembly state. J Neurosci 1993; 13: 1676–1687
  • Busciglio J, Lorenzo A, Yankner B A. Methodological variables in the assessment of beta amyloid neurotoxicity. Neurobiol Aging 1992; 13: 609–612
  • May P C, Gitter B D, Waters D C, Simmons L K, Becker G W, Small J S, Robinson P M. β-amyloid peptide in vitro toxicity: lot-to-lot variability. Neurobiol Aging 1992; 13: 605–607
  • Mattson M P, Cheng B, Davis D, Bryant K, Lieberburg I, Rydel R E. β-amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J Neurosci 1992; 12: 376–389
  • Waite J, Cole G M, Frautschy S A, Connor D J, Thal L J. Solvent effects on β-protein toxicity in vivo. Neurobiol Aging 1992; 13: 595–599
  • Shen C L, Murphy R M. Solvent effects on self-assembly of β-amyloid peptide. Biophys J 1995; 69: 640–651
  • Soto C, Castaño E M, Kumar R A, Beavis R C, Frangione B. Fibrillogenesis of synthetic amyloid-β peptides is dependent on their initial secondary structure. Neurosci Lett 1995; 200: 105–108
  • Stine W B, Dahlgren K N, Krafft G A, LaDu M J. In vitro characterization of conditions for amyloid-β peptide oligomerization and fibrillogenesis. J Biol Chem 2003; 278: 11612–11622
  • Shen C L, Fitzgerald M C, Murphy R M. Effect of acid predissolution on fibril size and fibril flexibility of synthetic β-amyloid peptide. Biophys J 1994; 67: 1238–1246
  • Fezoui Y, Hartley D M, Harper J D, Khurana R, Walsh D M, Condron M M, Selkoe D J, Lansbury P T, Fink A L, Teplow D B. An improved method of preparing the amyloid β-protein for fibrillogenesis and neurotoxicity experiments. Amyloid: Int J Exp Clin Invest 2000; 7: 166–178
  • Walsh D M, Hartley D M, Kusumoto Y, Fezoui Y, Condron M M, Lomakin A, Benedek G B, Selkoe D J, Teplow D B. Amyloid β-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J Biol Chem 1999; 274: 25945–25952
  • Huang T HJ, Yang D S, Plaskos N P, Go S, Yip C M, Fraser P E, Chakrabartty A. Structural studies of soluble oligomers of the Alzheimer β-amyloid peptide. J Mol Biol 2000; 297: 73–87
  • Zagorski M G, Barrow C J. NMR studies of amyloid β-peptides: proton assignments, secondary structure, and mechanism of an α-helix→β-sheet conversion for a homologous, 28-residue, N-terminal fragment. Biochemistry 1992; 31: 5621–5631
  • Wood S J, Maleeff B, Hart T, Wetzel R. Physical, morphological and functional differences between pH 5.8 and 7.4 aggregates of the Alzheimer's amyloid peptide Aβ. J Mol Biol 1996; 256: 870–877
  • Salomon A R, Marcinowski K J, Friedland R P, Zagorski M G. Nicotine inhibits amyloid formation by the β-peptide. Biochemistry 1996; 35: 13568–13578
  • Jao S C, Ma K, Talafous J, Orlando R, Zagorski M G. Trifluoroacetic acid pretreatment reproducibly disaggregates the amyloid β-peptide. Amyloid: Int J Exp Clin Invest 1997; 4: 240–252
  • Zagorski M G, Yang J, Shao H, Ma K, Zeng H, Hong A. Methodological and chemical factors affecting amyloid β peptide amyloidogenicity. Methods Enzymol 1999; 309: 189–204
  • Hou L, Shao H, Zhang Y, Li H, Menon N K, Neuhaus E B, Brewer J M, Byeon I JL, Ray D G, Vitek M P, Iwashita T, Makula R A, Przybyla A B, Zagorski M G. Solution NMR studies of the Aβ(1–40) and Aβ(1–42) peptides establish that the Met35 oxidation state affects the mechanism of amyloid formation. J Am Chem Soc 2004; 126: 1992–2005
  • Masters C L, Simms G, Weinman N A, Multhaup G, McDonald B L, Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 1985; 82: 4245–4249
  • Mori H, Takio K, Ogawara M, Selkoe D J. Mass spectrometry of purified amyloid β protein in Alzheimer's disease. J Biol Chem 1992; 267: 17082–17086
  • Permanne B, Buée L, David J P, Fallet-Bianco C, Di Menza C, Delacourte A. Quantitation of Alzheimer's amyloid peptide and identification of related amyloid proteins by dot-blot immunoassay. Brain Res 1995; 685: 154–162
  • Wisniewski T, Lalowski M, Bobik M, Russell M, Strosznajder J, Frangione B. Amyloid β 1–42 deposits do not lead to Alzheimer's neuritic plaques in aged dogs. Biochem J 1996; 313: 575–580
  • Klunk W E, Pettegrew J W. Alzheimer's β-amyloid protein is covalently modified when dissolved in formic acid. J Neurochem 1990; 54: 2050–2056
  • Barrow C J, Zagorski M G. Solution structures of β peptide and its constituent fragments: relation to amyloid deposition. Science 1991; 253: 179–182

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.