Publication Cover
Amyloid
The Journal of Protein Folding Disorders
Volume 25, 2018 - Issue 3
2,783
Views
42
CrossRef citations to date
0
Altmetric
Original Article

Polymorph-specific distribution of binding sites determines thioflavin-T fluorescence intensity in α-synuclein fibrils

ORCID Icon, , , &
Pages 189-196 | Received 20 Apr 2018, Accepted 27 Aug 2018, Published online: 28 Nov 2018

References

  • Knowles TP, Vendruscolo M, Dobson CM. The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol. 2014;15:384–396.
  • Groenning M. Binding mode of Thioflavin T and other molecular probes in the context of amyloid fibrils-current status. J Chem Biol. 2010;3:1–18.
  • Biancalana M, Koide S. Molecular mechanism of Thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta. 2010;1804:1405–1412.
  • Kuznetsova IM, Sulatskaya AI, Maskevich AA. High fluorescence anisotropy of Thioflavin T in aqueous solution resulting from its molecular rotor nature. Anal Chem. 2016;88:718–724.
  • Amdursky N, Erez Y, Huppert D. Molecular rotors: what lies behind the high sensitivity of the Thioflavin-T fluorescent marker. Acc Chem Res. 2012;45:1548–1557.
  • Maskevich AA, Stsiapura VI, Kuzmitsky VA, et al. Spectral properties of Thioflavin T in solvents with different dielectric properties and in a fibril-incorporated form. J Proteome Res. 2007;6:1392–1401.
  • Freire S, de Araujo MH, Al-Soufi W, et al. Photophysical study of Thioflavin T as fluorescence marker of amyloid fibrils. Dyes Pigments. 2014;110:97–105.
  • Krebs MR, Bromley EH, Donald AM. The binding of thioflavin-T to amyloid fibrils: localisation and implications. J Struct Biol. 2005;149:30–37.
  • Sulatskaya AI, Kuznetsova IM, Belousov MV, et al. Stoichiometry and affinity of Thioflavin T binding to Sup35p amyloid fibrils. PLoS One. 2016;11:e0156314.
  • LeVine H. Quantification of beta-sheet amyloid fibril structures with Thioflavin T. Meth Enzymol. 1999;309:274–284.
  • Sulatskaya AI, Kuznetsova IM, Turoverov KK. Interaction of thioflavin T with amyloid fibrils: fluorescence quantum yield of bound dye. J Phys Chem B. 2012;116:2538–2544.
  • Sulatskaya AI, Kuznetsova IM, Turoverov KK. Interaction of Thioflavin T with amyloid fibrils: stoichiometry and affinity of dye binding, absorption spectra of bound dye. J Phys Chem B. 2011;115:11519–11524.
  • Lockhart A, Ye L, Judd DB, et al. Evidence for the presence of three distinct binding sites for the thioflavin T class of Alzheimer's disease PET imaging agents on beta-amyloid peptide fibrils. J Biol Chem. 2005;280:7677–7684.
  • Wu C, Biancalana M, Koide S, et al. Binding modes of Thioflavin-T to the single-layer beta-sheet of the peptide self-assembly mimics. J Mol Biol. 2009;394:627–633.
  • Wu C, Wang Z, Lei H, et al. Dual binding modes of Congo red to amyloid protofibril surface observed in molecular dynamics simulations. J Am Chem Soc. 2007;129:1225–1232.
  • Heise H, Celej MS, Becker S, et al. Solid-state NMR reveals structural differences between fibrils of wild-type and disease-related A53T mutant alpha-synuclein. J Mol Biol. 2008;380:444–450.
  • Conway KA, Harper JD, Lansbury PT. Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med. 1998;4:1318–1320.
  • van Raaij ME, Segers-Nolten IM, Subramaniam V. Quantitative morphological analysis reveals ultrastructural diversity of amyloid fibrils from alpha-synuclein mutants. Biophys J. 2006;91:L96–L98.
  • Sidhu A, Segers-Nolten I, Subramaniam V. Conformational compatibility is essential for heterologous aggregation of alpha-synuclein. ACS Chem Neurosci. 2016;7:719–727.
  • Qiang W, Kelley K, Tycko R. Polymorph-specific kinetics and thermodynamics of β-amyloid fibril growth . J Am Chem Soc. 2013;135:6860–6871.
  • Paravastu AK, Leapman RD, Yau WM, et al. Molecular structural basis for polymorphism in Alzheimer's beta-amyloid fibrils. Proc Natl Acad Sci USA. 2008;105:18349–18354.
  • Lu JX, Qiang W, Yau WM, et al. Molecular structure of β-amyloid fibrils in Alzheimer's disease brain tissue . Cell. 2013;154:1257–1268.
  • Gath J, Bousset L, Habenstein B, et al. Unlike twins: an NMR comparison of two alpha-synuclein polymorphs featuring different toxicity. PLoS One. 2014;9:e90659.
  • Lindberg DJ, Wranne MS, Gilbert Gatty M, et al. Steady-state and time-resolved Thioflavin-T fluorescence can report on morphological differences in amyloid fibrils formed by Abeta(1-40) and Abeta(1-42). Biochem Biophys Res Commun. 2015;458:418–423.
  • Nielsen SB, Macchi F, Raccosta S, et al. Wildtype and A30P mutant alpha-synuclein form different fibril structures. PLoS One. 2013;8:e67713.
  • Sidhu A, Segers-Nolten I, Subramaniam V. Solution conditions define morphological homogeneity of alpha-synuclein fibrils. Biochim Biophys Acta. 2014;1844:2127–2134.
  • Grimsley GR, Pace CN. Spectrophotometric determination of protein concentration. Curr Protoc Protein Sci. 2004. DOI:10.1002/0471140864.ps0301s33
  • Giasson BI, Uryu K, Trojanowski JQ, et al. Mutant and wild type human alpha-synucleins assemble into elongated filaments with distinct morphologies in vitro. J Biol Chem. 1999;274:7619–7622.
  • Narhi L, Wood SJ, Steavenson S, et al. Both familial Parkinson's disease mutations accelerate alpha-synuclein aggregation. J Biol Chem. 1999;274:9843–9846.
  • Sidhu A, Segers-Nolten I, Raussens V, et al. Distinct mechanisms determine alpha-synuclein fibril morphology during growth and maturation. ACS Chem Neurosci. 2017;8:538–547.
  • Xue C, Lin TY, Chang D, et al. Thioflavin T as an amyloid dye: fibril quantification, optimal concentration and effect on aggregation. R Soc Open Sci. 2017;4:160696.
  • Seuring C, Verasdonck J, Ringler P, et al. Amyloid fibril polymorphism: almost identical on the atomic level, mesoscopically very different. J Phys Chem B. 2017;121:1783–1792.
  • Bousset L, Pieri L, Ruiz-Arlandis G, et al. Structural and functional characterization of two alpha-synuclein strains. Nat Commun. 2013;4:2575.
  • Buell AK, Galvagnion C, Gaspar R, et al. Solution conditions determine the relative importance of nucleation and growth processes in alpha-synuclein aggregation. Proc Natl Acad Sci USA. 2014;111:7671–7676.
  • Meisl G, Yang X, Dobson CM, et al. Modulation of electrostatic interactions to reveal a reaction network unifying the aggregation behaviour of the Abeta42 peptide and its variants. Chem Sci. 2017;8:4352–4362.