Publication Cover
Amyloid
The Journal of Protein Folding Disorders
Volume 30, 2023 - Issue 1
1,674
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Identification of AL proteins from 10 λ-AL amyloidosis patients by mass spectrometry extracted from abdominal fat and heart tissue

ORCID Icon, , , ORCID Icon, ORCID Icon, ORCID Icon, & show all
Pages 27-37 | Received 22 Mar 2022, Accepted 26 Jun 2022, Published online: 06 Jul 2022

References

  • Gertz MA. Immunoglobulin light chain amyloidosis: 2016 update on diagnosis, prognosis, and treatment. Am J Hematol. 2016;91(9):947–956.
  • Blancas-Mejía LM, Ramirez-Alvarado M. Systemic amyloidoses. Annu Rev Biochem. 2013;82:745–774.
  • Wechalekar A, Schönland S, Kastritis E, et al. A European collaborative study of treatment outcomes in 346 patients with cardiac stage III AL amyloidosis. Blood. 2013;121(17):3420–3427.
  • Bellotti V, Mangione P, Merlini G. Review: immunoglobulin light chain amyloidosis – the archetype of structural and pathogenic variability. J Struct Biol. 2000;130(2–3):280–289.
  • Murphy K, Travers P, Walport M. Janeway immunologie, 7th ed. Heidelberg: Spektrum Akademischer Verlag; 2009.
  • Gertz RA, Kyle MA. Primary systemic amyloidosis: clinical and laboratory features in 474 cases. Semin Hematol. 1995;32(1):45–59.
  • Comenzo RL, Zhang Y, Martinez C, et al. The tropism of organ involvement in primary systemic amyloidosis: contributions of Ig V L germ line gene use and clonal plasma cell burden. Blood. 2001;98(3):714–720.
  • Abraham RS, Geyer SM, Price-Troska TL, et al. Immunoglobulin light chain variable (V) region genes influence clinical presentation and outcome in light chain-associated amyloidosis (AL). Blood. 2003;101(10):3801–3808.
  • Berghaus N, Schreiner S, Granzow M, et al. Analysis of the complete lambda light chain germline usage in patients with AL amyloidosis and dominant heart or kidney involvement. PLoS One. 2022;17(2):e0264407.
  • Baden EM, Randles EG, Aboagye AK, et al. Structural insights into the role of mutations in amyloidogenesis. J Biol Chem. 2008;283(45):30950–30956.
  • Hurle MR, Helms LR, Li L, et al. A role for destabilizing amino acid replacements in light-chain amyloidosis. Proc Natl Acad Sci USA. 1994;91(12):5446–5450.
  • Kazman P, Vielberg MT, Pulido Cendales MD, et al. Fatal amyloid formation in a patient’s antibody light chain is caused by a single point mutation. Elife. 2020;9:e52300.
  • Del Pozo-Yauner L, Wall JS, González Andrade M, et al. The N-terminal strand modulates immunoglobulin light chain fibrillogenesis. Biochem Biophys Res Commun. 2014;443(2):495–499.
  • Rennella E, Morgan GJ, Yan N, et al. The role of protein thermodynamics and primary structure in fibrillogenesis of variable domains from immunoglobulin light chains. J Am Chem Soc. 2019;141(34):13562–13571.
  • Weber B, Hora M, Kazman P, et al. The antibody light-chain linker regulates domain orientation and amyloidogenicity. J Mol Biol. 2018;430(24):4925–4940.
  • Rottenaicher GJ, Weber B, Rührnößl F, et al. Molecular mechanism of amyloidogenic mutations in hypervariable regions of antibody light chains. J Biol Chem. 2021;296:100334.
  • Poshusta TL, Sikkink LA, Leung N, et al. Mutations in specific structural regions of immunoglobulin light chains are associated with free light chain levels in patients with AL amyloidosis. PLoS One. 2009;4(4):e5169.
  • van der Kant R, Karow-Zwick AR, Van Durme J, et al. Prediction and reduction of the aggregation of monoclonal antibodies. J Mol Biol. 2017;429(8):1244–1261.
  • Garofalo M, Piccoli L, Romeo M, et al. Machine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity. Nat Commun. 2021;12(1):10.
  • Buxbaum JN, Chuba JV, Hellman GC, et al. Monoclonal immunoglobulin deposition disease: light chain and light and heavy chain deposition diseases and their relation to light chain amyloidosis. Clinical features, immunopathology, and molecular analysis. Ann Intern Med. 1990;112(6):455–464.
  • Weber B, Hora M, Kazman P, et al. Domain interactions determine the amyloidogenicity of antibody light chain mutants. J Mol Biol. 2020;432(23):6187–6199.
  • Wall JS, Gupta V, Wilkerson M, et al. Structural basis of light chain amyloidogenicity: comparison of the thermodynamic properties, fibrillogenic potential and tertiary structural features of four Vλ6 proteins. J Mol Recognit. 2004;17(4):323–331.
  • Stevens FJ. Four structural risk factors identify most fibril-forming kappa light chains. Amyloid. 2000;7(3):200–211.
  • Mazzini G, Ricagno S, Caminito S, et al. Protease-sensitive regions in amyloid light chains: what a common pattern of fragmentation across organs suggests about aggregation. Febs J. 2022;289(2):494–506.
  • Radamaker L, Karimi-Farsijani S, Andreotti G, et al. Role of mutations and post-translational modifications in systemic AL amyloidosis studied by cryo-EM. Nat Commun. 2021;12(1):6434.
  • Retter I, Althaus HH, Münch R, et al. VBASE2, an integrative V gene database. Nucleic Acids Res. 2005;33(Database issue):D671–D674.
  • Howe KL, Achuthan P, Allen J, et al. Ensembl 2021. Nucleic Acids Res. 2021;49(D1):D884–D891.
  • Annamalai K, Liberta F, Vielberg MT, et al. Common fibril structures imply systemically conserved protein misfolding pathways in vivo. Angew Chem Int Ed Engl. 2017;56(26):7510–7514.
  • Wu Z, Roberts DS, Melby JA, et al. MASH explorer: a universal software environment for top-down proteomics. J Proteome Res. 2020;19(9):3867–3876.
  • Niedermeyer THJ, Strohalm M. mMass as a software tool for the annotation of cyclic peptide tandem mass spectra. PLoS One. 2012;7(9):e44913.
  • Gasteiger E, Gattiker A, Hoogland C, et al. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003;31(13):3784–3788.
  • Giudicelli V, Chaume D, Lefranc MP. IMGT/GENE-DB: a comprehensive database for human and mouse immunoglobulin and T cell receptor genes. Nucleic Acids Res. 2005;33(Database issue):D256–D261.
  • Kawasaki K, Minoshima S, Nakato E, et al. One-megabase sequence analysis of the human immunoglobulin lambda gene locus. Genome Res. 1997;7(3):250–261.
  • Swindells MB, Porter CT, Couch M, et al. abYsis: integrated antibody sequence and structure-management, analysis, and prediction. J Mol Biol. 2017;429(3):356–364.
  • Gasteiger E, Hoogland C, Gattiker A, et al. Protein identification and Analysis Tools on the ExPASy Server. Proteomics Protoc Handb. 2005;2005:571–607.
  • Fernandez-Escamilla AM, Rousseau F, Schymkowitz J, et al. Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol. 2004;22(10):1302–1306.
  • Gupta R, Brunak S. Prediction of glycosylation across the human proteome and the correlation to protein function. Authors to correct!. 2002;2002:310–322.
  • Pettersen EF, Goddard TD, Huang CC, et al. UCSF Chimera – a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–1612.
  • Palladini G, Hegenbart U, Milani P, et al. A staging system for renal outcome and early markers of renal response to chemotherapy in AL amyloidosis. Blood. 2014;124(15):2325–2332.
  • Van Gameren II, Hazenberg BPC, Bijzet J, et al. Amyloid load in fat tissue reflects disease severity and predicts survival in amyloidosis. Arthritis Care Res. 2010;62(3):296–301.
  • Dispenzieri A, Larson DR, Rajkumar SV, et al. N-glycosylation of monoclonal light chains on routine MASS-FIX testing is a risk factor for MGUS progression. Leukemia. 2020;34(10):2749–2753.
  • Glenner GG. Amyloid deposits and amyloidosis: the beta-fibrilloses (second of two parts). N Engl J Med. 1980;302(24):1333–1343.
  • Solomon A, Frangione B, Franklin EC. Bence Jones proteins and light chains of immunoglobulins. Preferential association of the V(λVI) subgroup of human light chains with amyloidosis AL(λ). J Clin Invest. 1982;70(2):453–460.
  • Lavatelli F, Perlman DH, Spencer B, et al. Amyloidogenic and associated proteins in systemic amyloidosis proteome of adipose tissue. Mol Cell Proteomics. 2008;7(8):1570–1583.
  • Chelius D, Jing K, Lueras A, et al. Formation of pyroglutamic acid from N-terminal glutamic acid in immunoglobulin gamma antibodies. Anal Chem. 2006;78(7):2370–2376.
  • Chiti F, Dobson CM. Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem. 2006;75:333–366.
  • Walker BA, Wardell CP, Melchor L, et al. Intraclonal heterogeneity is a critical early event in the development of myeloma and precedes the development of clinical symptoms. Leukemia. 2014;28(2):384–390.
  • Rasche L, Chavan SS, Stephens OW, et al. Spatial genomic heterogeneity in multiple myeloma revealed by multi-region sequencing. Nat Commun. 2017;8(1):268.
  • Bellotti V, Merlini G, Bucciarelli E, et al. Relevance of class, molecular weight and isoelectric point in predicting human light chain amyloidogenicity. Br J Haematol. 1990;74(1):65–69.
  • Kaplan B, Ramirez-Alvarado M, Dispenzieri A, et al. Isolation and biochemical characterization of plasma monoclonal free light chains in amyloidosis and multiple myeloma: a pilot study of intact and truncated forms of light chains and their charge properties. Clin Chem Lab Med. 2008;46(3):335–341.
  • Kaplan B, Livneh A, Gallo G. Charge differences between in vivo deposits in immunoglobulin light chain amyloidosis and non-amyloid light chain deposition disease. Br J Haematol. 2007;136(5):723–728.
  • Swuec P, Lavatelli F, Tasaki M, et al. Cryo-EM structure of cardiac amyloid fibrils from an immunoglobulin light chain AL amyloidosis patient. Nat Commun. 2019;10(1):1269.
  • Schmittschmitt JP, Scholtz JM. The role of protein stability, solubility, and net charge in amyloid fibril formation. Protein Sci. 2003;12(10):2374–2378.
  • Schein CH. Solubility as a function of protein structure and solvent components. Biotechnology. 1990;8(4):308–317.
  • Rennella E, Morgan GJ, Kelly JW, et al. Role of domain interactions in the aggregation of full-length immunoglobulin light chains. Proc Natl Acad Sci USA. 2019;116(3):854–863.
  • Klimtchuk ES, Gursky O, Patel RS, et al. The critical role of the constant region in thermal stability and aggregation of amyloidogenic immunoglobulin light chain. Biochemistry. 2010;49(45):9848–9857.
  • Lavatelli F, Mazzini G, Ricagno S, et al. Mass spectrometry characterization of light chain fragmentation sites in cardiac AL amyloidosis: insights into the timing of proteolysis. J Biol Chem. 2020;295(49):16572–16584.
  • Radamaker L, Lin YH, Annamalai K, et al. Cryo-EM structure of a light chain-derived amyloid fibril from a patient with systemic AL amyloidosis. Nat Commun. 2019;10(1):1103.
  • Radamaker L, Baur J, Huhn S, et al. Cryo-EM reveals structural breaks in a patient-derived amyloid fibril from systemic AL amyloidosis. Nat Commun. 2021;12(1):875.
  • Morgan GJ, Kelly JW. The kinetic stability of a full-length antibody light chain dimer determines whether endoproteolysis can release amyloidogenic variable domains. J Mol Biol. 2016;428(21):4280–4297.
  • Buxbaum J. Mechanisms of disease: monoclonal immunoglobulin deposition. Amyloidosis, light chain deposition disease, and light and heavy chain deposition disease. Hematol Oncol Clin North Am. 1992;6(2):323–346.