Publication Cover
Amyloid
The Journal of Protein Folding Disorders
Volume 30, 2023 - Issue 3
1,751
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Tafamidis concentration required for transthyretin stabilisation in cerebrospinal fluid

, , , ORCID Icon & ORCID Icon
Pages 279-289 | Received 06 Oct 2022, Accepted 07 Jan 2023, Published online: 24 Jan 2023

References

  • Kelly JW. Does protein aggregation drive postmitotic tissue degeneration? Science Trans Med. 2021;13:eaax0914.
  • Hammarström P, Schneider F, Kelly JW. Trans-suppression of misfolding in an amyloid disease. Science. 2001;293(5539):2459–2462.
  • Coelho T, Maia LF, Martins da Silva A, et al. Tafamidis for transthyretin familial amyloid polyneuropathy a randomized, controlled trial. Neurology. 2012;79(8):785–792.
  • Maurer MS, Schwartz JH, Gundapaneni B, et al. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N Engl J Med. 2018;379(11):1007–1016.
  • Berk JL, Suhr OB, Obici L, et al. Repurposing diflunisal for familial amyloid polyneuropathy a randomized clinical trial. JAMA. 2013;310(24):2658–2667.
  • Andrade C. A peculiar form of peripheral neuropathy; familiar atypical generalized amyloidosis with special involvement of the peripheral nerves. Brain. 1952;75(3):408–427.
  • Uitti R, Donat J, Rozdilsky B, et al. Familial oculoleptomeningeal amyloidosis. Report of a new family with unusual features. Arch Neurol. 1988;45(10):1118–1122.
  • Coelho T, Ines M, Conceicao I, et al. Natural history and survival in stage 1 Val30Met transthyretin familial amyloid polyneuropathy. Neurology. 2018;91(21):E1999–E2009.
  • Sekijima Y, Ueda M, Koike H, et al. Diagnosis and management of transthyretin familial amyloid polyneuropathy in Japan: red-flag symptom clusters and treatment algorithm (vol 13, pg 6, 2018) [correction]. Orphanet J Rare Dis. 2019;14(1):1.
  • Ikeda S. Amyloid neuropathy and autonomic dysfunction. Neurol Clin Neurosc. 2022;10(3):137–146.
  • Ruberg FL, Grogan M, Hanna M, et al. Transthyretin amyloid cardiomyopathy JACC state-of-the-Art review. J Am Coll Cardiol. 2019;73(22):2872–2891.
  • Kleefeld F, Scherret E, Knebel F, et al. Same same, but different? The neurological presentation of wildtype transthyretin (ATTRwt) amyloidosis. Amyloid. 2022;29(2):92–101.
  • Ushiyama M, Ikeda S, Yanagisawa N. Transthyretin-type cerebral amyloid angiopathy in type-i familial amyloid polyneuropathy. Acta Neuropathol. 1991;81(5):524–528.
  • Mitsuhashi S, Yazaki M, Tokuda T, et al. MRI analysis on a patient with the V30M mutation is characteristic of leptomeningeal amyloid. Amyloid. 2004;11(4):265–267.
  • Yoshinaga T, Takei YI, Katayanagi K, et al. Postmortem findings in a familial amyloid polyneuropathy patient with homozygosity of the mutant Val30Met transthyretin gene. Amyloid. 2004;11(1):56–60.
  • Maia LF, Magalhaes R, Freitas J, et al. CNS involvement in V30M transthyretin amyloidosis: clinical, neuropathological and biochemical findings. J Neurol Neurosurg Psychiatry. 2015;86(2):159–167.
  • Salvi F, Pastorelli F, Plasmati R, et al. Brain microbleeds 12 years after orthotopic liver transplantation in Val30Met amyloidosis. JStroke Cerebrovasc Dis. 2015;24(6):E149–E151.
  • Sekijima Y, Yazaki M, Oguchi K, et al. Cerebral amyloid angiopathy in posttransplant patients with hereditary ATTR amyloidosis. Neurology. 2016;87(8):773–781.
  • da Silva AM, Cavaco S, Fernandes J, et al. Age-dependent cognitive dysfunction in untreated hereditary transthyretin amyloidosis. J Neurol. 2018;265(2):299–307.
  • Sousa L, Coelho T, Taipa R. CNS involvement in hereditary transthyretin amyloidosis. Neurology. 2021;97(24):1111–1119.
  • Westermark P, Sletten K, Johansson B, et al. Fibril in senile systemic amyloidosis is derived from normal transthyretin. Proc Natl Acad Sci USA. 1990;87(7):2843–2845.
  • Rosenblum H, Castano A, Alvarez J, et al. TTR (transthyretin) stabilizers are associated with improved survival in patients with TTR cardiac amyloidosis. Circulation Heart Fail. 2018;11(4):e004769.
  • Hornstrup LS, Frikke-Schmidt R, Nordestgaard BG, et al. Genetic stabilization of transthyretin, cerebrovascular disease, and life expectancy. Arterioscler Thromb Vasc Biol. 2013;33(6):1441–1447.
  • Hammarstrom P, Sekijima Y, White JT, et al. D18G transthyretin is monomeric, aggregation prone, and not detectable in plasma and cerebrospinal fluid: a prescription for Central nervous system amyloidosis? Biochemistry. 2003;42(22):6656–6663.
  • Sekijima Y, Hammarstrom P, Matsumura M, et al. Energetic characteristics of the new transthyretin variant A25T may explain its atypical Central nervous system pathology. Lab Invest. 2003;83(3):409–417.
  • Sekijima Y, Wiseman RL, Matteson J, et al. The biological and chemical basis for tissue-selective amyloid disease. Cell. 2005;121(1):73–85.
  • Herbert J, Wilcox JN, Pham KT, et al. Transthyretin: a choroid plexus-specific transport protein in human brain. The 1986 S. Weir Mitchell award. Neurology. 1986;36(7):900–911.
  • Petersen RB, Goren H, Cohen M, et al. Transthyretin amyloidosis: a new mutation associated with dementia. Ann Neurol. 1997;41(3):307–313.
  • Qin Q, Wei CB, Piao YS, et al. Current review of leptomeningeal amyloidosis associated with transthyretin mutations. Neurologist. 2021;26(5):189–195.
  • Kametani F, Ikeda S, Yanagisawa N, et al. Characterization of a transthyretin-related amyloid fibril protein from cerebral amyloid angiopathy in type-1 familial amyloid polyneuropathy. J Neurol Scie. 1992;108(2):178–183.
  • Blake CC, Geisow MJ, Oatley SJ, et al. Structure of prealbumin: secondary, tertiary and quaternary interactions determined by Fourier refinement at 1.8 A. J Mol Biol. 1978;121(3):339–356.
  • Monaco HL, Rizzi M, Coda A. Structure of a complex of two plasma proteins: transthyretin and retinol-binding protein. Science. 1995;268(5213):1039–1041.
  • White JT, Kelly JW. Support for the multigenic hypothesis of amyloidosis: the binding stoichiometry of retinol-binding protein, vitamin A, and thyroid hormone influences transthyretin amyloidogenicity in vitro. Proc Natl Acad Sci USA. 2001;98(23):13019–13024.
  • Arvanitis M, Koch CM, Chan GG, et al. Identification of transthyretin cardiac amyloidosis using serum retinol-binding protein 4 and a clinical prediction model. JAMA Cardiol. 2017;2(3):305–313.
  • Eisele YS, Monteiro C, Fearns C, et al. Targeting protein aggregation for the treatment of degenerative diseases. Nat Rev Drug Discov. 2015;14(11):759–780.
  • Holmgren G, Ericzon BG, Groth CG, et al. Clinical improvement and amyloid regression after liver transplantation in hereditary transthyretin amyloidosis. Lancet. 1993;341(8853):1113–1116.
  • Ericzon BG, Wilczek HE, Larsson M, et al. Liver transplantation for hereditary transthyretin amyloidosis: after 20 years still the best therapeutic alternative? Transplantation. 2015;99(9):1847–1854.
  • Holmgren G, Steen L, Ekstedt J, et al. Biochemical effect of liver transplantation in two swedish patients with familial amyloidotic polyneuropathy (FAP-Met30). Clin Genet. 1991;40(3):242–246.
  • Benson MD, Waddington-Cruz M, Berk JL, et al. Inotersen treatment for patients with hereditary transthyretin amyloidosis. N Engl J Med. 2018;379(1):22–31.
  • Adams D, Gonzalez-Duarte A, O'Riordan WD, et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N Engl J Med. 2018;379(1):11–21.
  • Wange N, Anan I, Ericzon BG, et al. Atrial fibrillation and Central nervous complications in liver transplanted hereditary transthyretin amyloidosis patients. Transplantation. 2018;102(2):e59–e66.
  • Lockwood PA, Le VH, O’Gorman MT, et al. The bioequivalence of tafamidis 61-mg free acid capsules and tafamidis meglumine 4 x 20-mg capsules in healthy volunteers. Clin Pharmacol Drug Devel. 2020;9(7):849–854.
  • Monteiro C, da Silva AM, Ferreira N, et al. Cerebrospinal fluid and vitreous body exposure to orally administered tafamidis in hereditary ATTRV30M (p.TTRV50M) amyloidosis patients. Amyloid. 2018;25(2):120–128.
  • Nelson LT, Paxman RJ, Xu J, et al. Blinded potency comparison of transthyretin kinetic stabilisers by subunit exchange in human plasma. Amyloid. 2021;28(1):24–29.
  • Bulawa CE, Connelly S, Devit M, et al. Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid Cascade. Proc Natl Acad Sci USA. 2012;109(24):9629–9634.
  • Monteiro C, Mesgazardeh JS, Anselmo J, et al. Predictive model of response to tafamidis in hereditary ATTR polyneuropathy. JCI Insight. 2019;4(12):e126526.
  • Elliott P, Drachman BM, Gottlieb SS, et al. Long-term survival with tafamidis in patients with transthyretin amyloid cardiomyopathy. Circulation Heart Fail. 2022;15(1):120.008193.
  • Monteiro C, Mesgarzadeh JS, Anselmo J, et al. Tafamidis polyneuropathy amelioration requires modest increases in transthyretin stability even though increases in plasma native TTR and decreases in non-native TTR do not predict response. Amyloid. 2022;2022:1–15.
  • Wiseman RL, Green NS, Kelly JW. Kinetic stabilization of an oligomeric protein under physiological conditions demonstrated by a lack of subunit exchange: implications for transthyretin amyloidosis. Biochemistry. 2005;44(25):9265–9274.
  • Choi S, Ong DS, Kelly JW. A stilbene that binds selectively to transthyretin in cells and remains dark until it undergoes a chemoselective reaction to create a bright blue fluorescent conjugate. J Am Chem Soc. 2010;132(45):16043–16051.
  • Rappley I, Monteiro C, Novais M, et al. Quantification of transthyretin kinetic stability in human plasma using subunit exchange. Biochemistry. 2014;53(12):1993–2006.
  • Reiber H. Dynamics of brain-derived proteins in cerebrospinal fluid. Clin Chim Acta. 2001;310(2):173–186.
  • Begcevic I, Brinc D, Drabovich AP, et al. Identification of brain-enriched proteins in the cerebrospinal fluid proteome by LC-MS/MS profiling and mining of the human protein atlas. Clin Proteom. 2016;13(1):13.
  • Schneider F, Hammarstrom P, Kelly JW. Transthyretin slowly exchanges subunits under physiological conditions: a convenient chromatographic method to study subunit exchange in oligomeric proteins. Protein Sci. 2001;10(8):1606–1613.
  • Nelson GA, Edward DP, Wilensky JT. Ocular amyloidosis and secondary glaucoma. Ophthalmology. 1999;106(7):1363–1366.
  • Jacobson DR, Pastore RD, Yaghoubian R, et al. Variant-sequence transthyretin (isoleucine 122) in late-onset cardiac amyloidosis in black Americans. N Engl J Med. 1997;336(7):466–473.
  • Tanskanen M, Peuralinna T, Polvikoski T, et al. Senile systemic amyloidosis affects 25% of the very aged and associates with genetic variation in alpha2-macroglobulin and tau: a population-based autopsy study. Annals Med. 2008;40(3):232–239.
  • Ueda M, Horibata Y, Shono M, et al. Clinicopathological features of senile systemic amyloidosis: an ante- and post-mortem study. Mod Pathol. 2011;24(12):1533–1544.
  • Mazur C, Powers B, Zasadny K, et al. Brain pharmacology of intrathecal antisense oligonucleotides revealed through multimodal imaging. JCI Insight. 2019;4(20):129240.
  • Brazil R. Silencing the genes that harm the brain. The Pharmaceutical Journal. 2022;309(7964). DOI:10.1211/PJ.2022.1.151588
  • Silverman RB, Holladay MW. The organic chemistry of drug design and drug action. 3rd ed. Amsterdam: Elsevier; 2014. March 29, 2014.
  • Sant’Anna R, Gallego P, Robinson LZ, et al. Repositioning tolcapone as a potent inhibitor of transthyretin amyloidogenesis and associated cellular toxicity. Nat Commun. 2016;7:10787.
  • Russ H, Müller T, Woitalla D, et al. Detection of tolcapone in the cerebrospinal fluid of parkinsonian subjects. Naunyn-Schmiedeberg’s Arch Pharmacol. 1999;360(6):719–720. 1999/12/01