Publication Cover
Amyloid
The Journal of Protein Folding Disorders
Volume 31, 2024 - Issue 1
332
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Correlation of 99mTc-DPD bone scintigraphy with histological amyloid load in patients with ATTR cardiac amyloidosis

, , , , , , , , , , , & show all
Pages 22-31 | Received 26 Feb 2023, Accepted 18 Jul 2023, Published online: 02 Aug 2023

References

  • Eicher JC, Audia S, Damy T. Transthyretin cardiac amyloidosis. Rev Med Interne. 2020;41(10):673–683. doi: 10.1016/j.revmed.2020.07.002.
  • Gillmore JD, Maurer MS, Falk RH, et al. Nonbiopsy diagnosis of cardiac transthyretin amyloidosis. Circulation. 2016;133(24):2404–2412. doi: 10.1161/CIRCULATIONAHA.116.021612.
  • Caobelli F, Braun M, Haaf P, et al. Quantitative (99m)Tc-DPD SPECT/CT in patients with suspected ATTR cardiac amyloidosis: feasibility and correlation with visual scores. J Nucl Cardiol. 2020;27(5):1456–1463. doi: 10.1007/s12350-019-01893-8.
  • Escher F, Senoner M, Doerler J, et al. When and how do patients with cardiac amyloidosis die? Clin Res Cardiol. 2020;109(1):78–88. doi: 10.1007/s00392-019-01490-2.
  • Gillmore JD, Lovat LB, Persey MR, et al. Amyloid load and clinical outcome in AA amyloidosis in relation to circulating concentration of serum amyloid A protein. Lancet. 2001;358(9275):24–29. doi: 10.1016/S0140-6736(00)05252-1.
  • Lachmann HJ, Gallimore R, Gillmore JD, et al. Outcome in systemic AL amyloidosis in relation to changes in concentration of circulating free immunoglobulin light chains following chemotherapy. Br J Haematol. 2003;122(1):78–84. doi: 10.1046/j.1365-2141.2003.04433.x.
  • Lachmann HJ, Goodman HJ, Gilbertson JA, et al. Natural history and outcome in systemic AA amyloidosis. N Engl J Med. 2007;356(23):2361–2371. doi: 10.1056/NEJMoa070265.
  • Palladini G, Dispenzieri A, Gertz MA, et al. New criteria for response to treatment in immunoglobulin light chain amyloidosis based on free light chain measurement and cardiac biomarkers: impact on survival outcomes. J Clin Oncol. 2012;30(36):4541–4549. doi: 10.1200/JCO.2011.37.7614.
  • Maurer MS, Schwartz JH, Gundapaneni B, et al. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy. N Engl J Med. 2018;379(11):1007–1016. doi: 10.1056/NEJMoa1805689.
  • Damy T, Garcia-Pavia P, Hanna M, et al. Efficacy and safety of tafamidis doses in the tafamidis in transthyretin cardiomyopathy clinical trial (ATTR-ACT) and long-term extension study. Eur J Heart Fail. 2021;23(2):277–285. doi: 10.1002/ejhf.2027.
  • Warner AL. Advances in the treatment of transthyretin cardiac amyloidosis: current and emerging therapies. Pharmacotherapy. 2021;41(12):1081–1091. doi: 10.1002/phar.2639.
  • Khedraki R. Cardiac amyloidosis: an update on diagnosis, current therapy, and future directions. Curr Opin Cardiol. 2022;37(3):272–284. doi: 10.1097/HCO.0000000000000953.
  • Plumadore E, Lombardo L, Cabral KP. Pharmacotherapy review: emerging treatment modalities in transthyretin cardiac amyloidosis. Am J Health Syst Pharm. 2022;79(2):52–62. doi: 10.1093/ajhp/zxab356.
  • Kammerlander AA, Marzluf BA, Zotter-Tufaro C, et al. T1 mapping by CMR imaging: from histological validation to clinical implication. JACC Cardiovasc Imaging. 2016;9(1):14–23. doi: 10.1016/j.jcmg.2015.11.002.
  • Flett AS, Hayward MP, Ashworth MT, et al. Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans. Circulation. 2010;122(2):138–144. doi: 10.1161/CIRCULATIONAHA.109.930636.
  • Mascherbauer J, Marzluf BA, Tufaro C, et al. Cardiac magnetic resonance postcontrast T1 time is associated with outcome in patients with heart failure and preserved ejection fraction. Circ Cardiovasc Imaging. 2013;6(6):1056–1065. doi: 10.1161/CIRCIMAGING.113.000633.
  • Aus Dem Siepen F, Buss SJ, Messroghli D, et al. T1 mapping in dilated cardiomyopathy with cardiac magnetic resonance: quantification of diffuse myocardial fibrosis and comparison with endomyocardial biopsy. Eur Heart J Cardiovasc Imaging. 2015;16(2):210–216. doi: 10.1093/ehjci/jeu183.
  • Bull S, White SK, Piechnik SK, et al. Human non-contrast T1 values and correlation with histology in diffuse fibrosis. Heart. 2013;99(13):932–937. doi: 10.1136/heartjnl-2012-303052.
  • Fontana M, White SK, Banypersad SM, et al. Comparison of T1 mapping techniques for ECV quantification. Histological validation and reproducibility of ShMOLLI versus multibreath-hold T1 quantification equilibrium contrast CMR. J Cardiovasc Magn Reson. 2012;14(1):88. doi: 10.1186/1532-429X-14-88.
  • Iles L, Pfluger H, Phrommintikul A, et al. Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. J Am Coll Cardiol. 2008;52(19):1574–1580. doi: 10.1016/j.jacc.2008.06.049.
  • Iles LM, Ellims AH, Llewellyn H, et al. Histological validation of cardiac magnetic resonance analysis of regional and diffuse interstitial myocardial fibrosis. Eur Heart J Cardiovasc Imaging. 2015;16(1):14–22. doi: 10.1093/ehjci/jeu182.
  • Miller CA, Naish JH, Bishop P, et al. Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume. Circ Cardiovasc Imaging. 2013;6(3):373–383. doi: 10.1161/CIRCIMAGING.112.000192.
  • White SK, Sado DM, Fontana M, et al. T1 mapping for myocardial extracellular volume measurement by CMR: bolus only versus primed infusion technique. JACC Cardiovasc Imaging. 2013;6(9):955–962. doi: 10.1016/j.jcmg.2013.01.011.
  • Martinez-Naharro A, Treibel TA, Abdel-Gadir A, et al. Magnetic resonance in transthyretin cardiac amyloidosis. J Am Coll Cardiol. 2017;70(4):466–477. doi: 10.1016/j.jacc.2017.05.053.
  • Martinez-Naharro A, Kotecha T, Norrington K, et al. Native T1 and extracellular volume in transthyretin amyloidosis. JACC Cardiovasc Imaging. 2019;12(5):810–819. doi: 10.1016/j.jcmg.2018.02.006.
  • Perugini E, Guidalotti PL, Salvi F, et al. Noninvasive etiologic diagnosis of cardiac amyloidosis using 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy. J Am Coll Cardiol. 2005;46(6):1076–1084. doi: 10.1016/j.jacc.2005.05.073.
  • Arheden H, Saeed M, Higgins CB, et al. Measurement of the distribution volume of gadopentetate dimeglumine at echo-planar MR imaging to quantify myocardial infarction: comparison with 99mTc-DTPA autoradiography in rats. Radiology. 1999;211(3):698–708. doi: 10.1148/radiology.211.3.r99jn41698.
  • Chen W, Doeblin P, Al-Tabatabaee S, et al. Synthetic extracellular volume in cardiac magnetic resonance without blood sampling: a reliable tool to replace conventional extracellular volume. Circ Cardiovasc Imaging. 2022;15(4):e013745.
  • Schönland SO, Hegenbart U, Bochtler T, et al. Immunohistochemistry in the classification of systemic forms of amyloidosis: a systematic investigation of 117 patients. Blood. 2012;119(2):488–493. doi: 10.1182/blood-2011-06-358507.
  • Hahn K, Nilsson KPR, Hammarström P, et al. Establishing and validating the fluorescent amyloid ligand h-FTAA (heptamer formyl thiophene acetic acid) to identify transthyretin amyloid deposits in carpal tunnel syndrome. Amyloid. 2017;24(2):78–86. doi: 10.1080/13506129.2017.1316711.
  • Dorbala S, Cuddy S, Falk RH. How to image cardiac amyloidosis: a practical approach. JACC Cardiovasc Imaging. 2020;13(6):1368–1383. doi: 10.1016/j.jcmg.2019.07.015.
  • Dorbala S, Kijewski MF, Park MA. Quantitative bone-avid tracer SPECT/CT for cardiac amyloidosis: a crucial step forward. JACC Cardiovasc Imaging. 2020;13(6):1364–1367. doi: 10.1016/j.jcmg.2020.05.005.
  • Rapezzi C, Quarta CC, Guidalotti PL, et al. Role of (99m)Tc-DPD scintigraphy in diagnosis and prognosis of hereditary transthyretin-related cardiac amyloidosis. JACC Cardiovasc Imaging. 2011;4(6):659–670. doi: 10.1016/j.jcmg.2011.03.016.
  • Singh V, Falk R, Di Carli MF, et al. State-of-the-art radionuclide imaging in cardiac transthyretin amyloidosis. J Nucl Cardiol. 2019;26(1):158–173. doi: 10.1007/s12350-018-01552-4.
  • Ross JC, Hutt DF, Burniston M, et al. Quantitation of (99m)Tc-DPD uptake in patients with transthyretin-related cardiac amyloidosis. Amyloid. 2018;25(3):203–210. doi: 10.1080/13506129.2018.1520087.
  • Ben-Haim S, Chicheportiche A, Goshen E, et al. Quantitative SPECT/CT parameters of myocardial (99m)technetium-3,3-diphosphono-1,2-propanodicarboxylic acid (DPD) uptake in suspected cardiac transthyretin amyloidosis. EJNMMI Res. 2021;11(1):86. doi: 10.1186/s13550-021-00828-0.
  • Löfbacka V, Axelsson J, Pilebro B, et al. Cardiac transthyretin amyloidosis (99m)Tc-DPD SPECT correlates with strain echocardiography and biomarkers. Eur J Nucl Med Mol Imaging. 2021;48(6):1822–1832. doi: 10.1007/s00259-020-05144-8.
  • Morioka M, Takashio S, Nakashima N, et al. Correlation between cardiac images, biomarkers, and amyloid load in wild-type transthyretin amyloid cardiomyopathy. J Am Heart Assoc. 2022;11(12):e024717.
  • Kristen AV, Brokbals E, Aus Dem Siepen F, et al. Cardiac amyloid load: a prognostic and predictive biomarker in patients with light-chain amyloidosis. J Am Coll Cardiol. 2016;68(1):13–24. doi: 10.1016/j.jacc.2016.04.035.
  • Hutt DF, Fontana M, Burniston M, et al. Prognostic utility of the perugini grading of 99mTc-DPD scintigraphy in transthyretin (ATTR) amyloidosis and its relationship with skeletal muscle and soft tissue amyloid. Eur Heart J Cardiovasc Imaging. 2017;18(12):1344–1350. doi: 10.1093/ehjci/jew325.
  • Kristen AV, Scherer K, Buss S, et al. Noninvasive risk stratification of patients with transthyretin amyloidosis. JACC Cardiovasc Imaging. 2014;7(5):502–510. doi: 10.1016/j.jcmg.2014.03.002.
  • Miller RJH, Cadet S, Mah D, et al. Diagnostic and prognostic value of technetium-99m pyrophosphate uptake quantitation for transthyretin cardiac amyloidosis. J Nucl Cardiol. 2021;28(5):1835–1845. doi: 10.1007/s12350-021-02563-4.
  • Roshankar G, White GC, Cadet S, et al. Quantitative technetium pyrophosphate and cardiovascular magnetic resonance in patients with suspected cardiac amyloidosis. J Nucl Cardiol. 2022;29(5):2679–2690. doi: 10.1007/s12350-021-02806-4.
  • Fontana M, Martinez-Naharro A, Chacko L, et al. Reduction in CMR derived extracellular volume with patisiran indicates cardiac amyloid regression. JACC Cardiovasc Imaging. 2021;14(1):189–199. doi: 10.1016/j.jcmg.2020.07.043.
  • Ross JC, Hutt DF, Burniston M, et al. The role of serial (99m)Tc-DPD scintigraphy in monitoring cardiac transthyretin amyloidosis. Amyloid. 2022;29(1):38–49. doi: 10.1080/13506129.2021.1991302.
  • Stats MA, Stone JR. Varying levels of small microcalcifications and macrophages in ATTR and AL cardiac amyloidosis: implications for utilizing nuclear medicine studies to subtype amyloidosis. Cardiovasc Pathol. 2016;25(5):413–417. doi: 10.1016/j.carpath.2016.07.001.
  • Thelander U, Westermark GT, Antoni G, et al. Cardiac microcalcifications in transthyretin (ATTR) amyloidosis. Int J Cardiol. 2022;352:84–91. doi: 10.1016/j.ijcard.2022.01.036.
  • Pomerance A, Slavin G, McWatt J. Experience with the sodium sulphate-Alcian blue stain for amyloid in cardiac pathology. J Clin Pathol. 1976;29(1):22–26. doi: 10.1136/jcp.29.1.22.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.