340
Views
14
CrossRef citations to date
0
Altmetric
Review

Diagnostic markers for glaucoma: a patent and literature review (2013-2019)

ORCID Icon & ORCID Icon
Pages 829-839 | Received 20 Jul 2019, Accepted 10 Sep 2019, Published online: 18 Sep 2019

References

  • Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123:1036–1042.
  • Tan NYQ, Sng CCA, Jonas JB, et al. Glaucoma in myopia: diagnostic dilemmas. Br J Ophthalmol. published online 2019 April 30. DOI:10.1136/bjophthalmol-2018-313530.
  • Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90:262–267.
  • Keller KE, Bradley JM, Vranka JA, et al. Segmental versican expression in the trabecular meshwork and involvement in outflow facility. Invest Ophthalmol Vis Sci. 2011;52:5049–5057.
  • Colligris B, Crooke A, Gasull X, et al. Recent patents and developments in glaucoma biomarkers. Recent Pat Endocr Metab Immune Drug Discov. 2012;6:224–234.
  • Nocentini A, Ferraroni M, Carta F, et al. Benzenesulfonamides incorporating flexible triazole moieties are highly effective carbonic anhydrase inhibitors: synthesis and kinetic, crystallographic, computational, and intraocular pressure lowering investigations. J Med Chem. 2016;59:10692–10704.
  • Supuran CT. Structure-based drug discovery of carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem. 2012;27:759–772.
  • Carradori S, Mollica A, De Monte C, et al. Nitric oxide donors and selective carbonic anhydrase inhibitors: a dual pharmacological approach for the treatment of glaucoma, cancer and osteoporosis. Molecules. 2015;20:5667–5679.
  • Scozzafava A, Supuran CT. Glaucoma and the applications of carbonic anhydrase inhibitors. Subcell Biochem. 2014;75:349–359.
  • Masini E, Carta F, Scozzafava A, et al. Antiglaucoma carbonic anhydrase inhibitors: a patent review. Expert Opin Ther Pat. 2013;23:705–716.
  • Lolak N, Akocak S, Bua S, et al. Design and synthesis of novel 1,3-diaryltriazene-substituted sulfonamides as potent and selective carbonic anhydrase II inhibitors. Bioorg Chem. 2018;77:542–547.
  • Kumar R, Vats L, Bua S, et al. Design and synthesis of novel benzenesulfonamide containing 1,2,3-triazoles as potent human carbonic anhydrase isoforms I, II, IV and IX inhibitors. Eur J Med Chem. 2018;155:545–551.
  • Nocentini A, Ceruso M, Bua S, et al. Discovery of β-adrenergic receptors blocker-carbonic anhydrase inhibitor hybrids for multitargeted antiglaucoma therapy. J Med Chem. 2018;61:5380–5394.
  • Quigley HA. Glaucoma. Lancet. 2011;377:1367–1377.
  • Zhang K, Zhang L, Weinreb RN. Ophthalmic drug discovery: novel targets and mechanisms for retinal disease and glaucoma. Nat Rev Drug Discovery. 2012;11:541–559.
  • Ehlers N, Hansen FK, Aasved H. Biometric correlations of corneal thickness. Acta Ophthalmol (Copenh). 1975;53:652–659.
  • Tham YC, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121:2081–2090.
  • Carta F, Supuran CT, Scozzafava A. Novel therapies for glaucoma: a patent review 2007−2011. Expert Opin Ther Pat. 2012;22:79–88.
  • Glaucoma. Humanitas mater domini. [cited 2019 Jun 4]. Available from: https://www.materdomini.it/malattie/glaucoma/
  • Glaucoma. IRCCS Fondazione G.B. Bietti per lo Studio e la Ricerca in Oftalmologia – ONLUS. [cited 2019 May 26]. Available from: https://www.fondazionebietti.it/it/glaucoma
  • Stamper RL. A history of intraocular pressure and its measurement. Optom Vis Sci. 2011;88:E16–28.
  • Goldmann H. Un nouveau tonometre d’applanation. Bull Soc Ophtalmol Fr. 1955;67:474–478.
  • Whitacre MM, Stein RA, Hassanein K. The effect of corneal thickness on applanation tonometry. Am J Ophthalmol. 1993;115:592–596.
  • Herndon LW, Choudhri SA, Cox T, et al. Central corneal thickness in normal, glaucomatous, and ocular hypertensive eyes. Arch Ophthalmol. 1997;115:1137–1141.
  • Wolfs RC, Klaver CC, Vingerling JR, et al. Distribution of central corneal thickness and its association with intraocular pressure: the Rotterdam study. Am J Ophthalmol. 1997;123:767–772.
  • Brandt JD, Beiser JA, Kass MA, et al. Central corneal thickness in the ocular hypertension treatment study (OHTS). Ophthalmology. 2001;108:1779–1788.
  • Tonnu PA, Ho T, Newson T, et al. The influence of central corneal thickness and age on intraocular pressure measured by pneumotonometry, non-contact tonometry, the Tono-Pen XL, and Goldmann applanation tonometry. Br J Ophthalmol. 2005;89:851–854.
  • Feng R, Luk SMH, Wu CHK, et al. Perceptions of training in gonioscopy. Eye (Lond). 2019 July 2 published online. DOI:10.1038/s41433-019-0498-8.
  • Sakata LM, Lavanya R, Friedman DS, et al. Comparison of gonioscopy and anterior segment ocular coherence tomography in detecting angle closure in different quadrants of the anterior chamber angle. Ophthalmology. 2008;115:769–774.
  • Ting DSJ, Ghosh S. Central toxic keratopathy after contact lens wear and mechanical debridement: clinical characteristics, and visual and corneal tomographic outcomes. Eye Contact Lens. 2019;45:e15–e23.
  • Hau WKT, Yan BPY. Role of intravascular imaging in primary PCI. Source primary angioplasty: a practical guide [Internet]. Singapore: Springer; 2018.
  • Otis LL, Everett MJ, Sathyam US, et al. Optical coherence tomography: a new imaging technology for dentistry. J Am Dent Assoc. 2000;131:511–514.
  • Igarashi R, Ochiai S, Sakaue Y, et al. Optical coherence tomography angiography of the peripapillary capillaries in primary open-angle and normal-tension glaucoma. PLoS One. 2017;12:e0184301.
  • Fogagnolo P, Digiuni M, Montesano G, et al. Compass fundus automated perimetry. Eur J Ophthalmol. 2018;28:481–490.
  • Shigeru K, Kei T, Masakazu N, et al. Method for determination of onset risk of glaucoma. US2010196895. 2010.
  • Shigeru K, Kei T, Masakazu N, et al. Method for determination of onset risk of glaucoma. US8431345. 2013.
  • Shigeru K, Kei T, Masakazu N, et al. Method for determination of onset risk of glaucoma. US2013012408. 2013.
  • Shigeru K, Kei T, Masakazu N, et al. Method for determination of onset risk of glaucoma. US2013210668. 2013.
  • Gaasterland T, Gaasterland DE Methods of identifying biomarkers associated with or causative of the progression of disease. US2015315645. 2015.
  • Gaasterland T, Gaasterland DE Methods of identifying biomarkers associated with or causative of the progression of disease, in particular for use in prognosticating primary open angle glaucoma. WO2015171457. 2015.
  • Liu Y, Allingham RR. Major review: molecular genetics of primary open-angle glaucoma. Exp Eye Res. 2017;160:62–84.
  • Sheffield VC, Stone EM, Alward WL, et al. Genetic linkage of familial open angle glaucoma to chromosome 1q21-q31. Nat Genet. 1993;4:47–50.
  • Akiyama M, Yatsu K, Ota M, et al. Microsatellite analysis of the GLC1B locus on chromosome 2 points to NCK2 as a new candidate gene for normal tension glaucoma. Br J Ophthalmol. 2008;92:1293–1296.
  • Keller KE, Yang YF, Sun YY, et al. Interleukin-20 receptor expression in the trabecular meshwork and its implication in glaucoma. J Ocul Pharmacol Ther. 2014;30:267–276.
  • Trifan OC, Traboulsi EI, Stoilova D, et al. A third locus (GLC1D) for adult-onset primary open-angle glaucoma maps to the 8q23 region. Am J Ophthalmol. 1998;126:17–28.
  • Rezaie T, Child A, Hitchings R, et al. Adult-onset primary open-angle glaucoma caused by mutations in optineurin. Science. 2002;295:1077–1079.
  • Pasutto F, Keller KE, Weisschuh N, et al. Variants in ASB10 are associated with open-angle glaucoma. Hum Mol Genet. 2012;21:1336–1349.
  • Monemi S, Spaeth G, DaSilva A, et al. Identification of a novel adultonset primary open-angle glaucoma (POAG) gene on 5q22.1. Hum Mol Genet. 2005;14:725–733.
  • Lin Y, Liu T, Li J, et al. A genome-wide scan maps a novel autosomal dominant juvenile-onset open-angle glaucoma locus to 2p15-16. Mol Vis. 2008;14:739–744.
  • Allingham RR, Wiggs JL, Hauser ER, et al. Early adult-onset POAG linked to 15q11-13 using ordered subset analysis. Invest Ophthalmol Vis Sci. 2005;46:2002–2005.
  • Wiggs JL, Lynch S, Ynagi G, et al. A genomewide scan identifies novel early-onset primary open-angle glaucoma loci on 9q22 and 20p12. Am J Hum Genet. 2004;74:1314–1320.
  • Baird PN, Foote SJ, Mackey DA, et al. Evidence for a novel glaucoma locus at chromosome 3p21-22. Hum Genet. 2005;117:249–257.
  • Fan BJ, Ko WC, Wang DY, et al. Fine mapping of new glaucoma locus GLC1M and exclusion of neuregulin 2 as the causative gene. Mol Vis. 2007;13:779–784.
  • Wang DY, Fan BJ, Chua JK, et al. A genome-wide scan maps a novel juvenile-onset primary open-angle glaucoma locus to 15q. Invest Ophthalmol Vis Sci. 2006;47:5315–5321.
  • Liu Y, Liu W, Crooks K, et al. No evidence of association of heterozygous NTF4 mutations in patients with primary open-angle glaucoma. Am J Hum Genet. 2010;86:498–499.
  • Bennett SR, Alward WL, Folberg R. An autosomal dominant form of low-tension glaucoma. Am J Ophthalmol. 1989;108:238–244.
  • Stone EM, Fingert JH, Alward WL, et al. Identification of a gene that causes primary open angle glaucoma. Science. 1997;275:668–670.
  • Mahmood SU, Saeed A, Bua S, et al. Synthesis, biological evaluation and computational studies of novel iminothiazolidinone benzenesulfonamides as potent carbonic anhydrase II and IX inhibitors. Bioorg Chem. 2018;77:381–386.
  • Richards JE, Lichter PR, Boehnke M, et al. Mapping of a gene for autosomal dominant juvenile-onset open-angle glaucoma to chromosome Iq. Am J Hum Genet. 1994;54:62–70.
  • Wiggs JL, Haines JL, Paglinauan C, et al. Genetic linkage of autosomal dominant juvenile glaucoma to 1q21-q31 in three affected pedigrees. Genomics. 1994;212:299–303.
  • Morissette J, Côté G, Anctil JL, et al. A common gene for juvenile and adult-onset primary open-angle glaucomas confined on chromosome 1q. Am J Hum Genet. 1995;56:1431–1442.
  • Yue BY. Myocilin and Optineurin: differential characteristics and functional consequences. Taiwan J Ophthalmol. 2011;1:6–11.
  • Lopez-Martinez F, Lopez-Garrido MP, Sanchez-Sanchez F, et al. Role of MYOC and OPTN sequence variations in Spanish patients with primary open-angle glaucoma. Mol Vis. 2007;13:862–872.
  • Melki R, Belmouden A, Brezin A, et al. Myocilin analysis by DHPLC in French POAG patients: increased prevalence of Q368X mutation. Hum Mutat. 2003;22:179.
  • Craig JE, Baird PN, Healey DL, et al. Evidence for genetic heterogeneity within eight glaucoma families, with the GLC1A Gln368STOP mutation being an important phenotypic modifier. Ophthalmology. 2001;108:1607–1620.
  • Useinovna DL, Leonidovich LS, Rifovna ZA et al. Method for detecting p.q368x myocilin (myoc) gene mutation causing primary open-angle glaucoma. RU2014107633 (2015)
  • Xie L, Mao M, Wang C, et al. Potential biomarkers for primary open-angle glaucoma identified by long noncoding RNA profiling in the aqueous humor. Am J Pathol. 2019;189:739–752.
  • Warner JR. The economics of ribosome biosynthesis in yeast. Trends Biochem Sci. 1999;24:437–440.
  • Ebert MS, Sharp PA. MicroRNA sponges: progress and possibilities. RNA. 2010;16:2043–2050.
  • Wu H, Yang L, Chen LL. The diversity of long noncoding RNAs and their generation. Trends Genet. 2017;33:540–552.
  • Jandura A, Krause HM. The new RNA world: growing evidence for long noncoding RNA functionality. Trends Genet. 2017;33:665–676.
  • Sauvageau M, Goff LA, Lodato S, et al. Multiple knockout mouse models reveal lincRNAs are required for life and brain development. Elife. 2013;2:e01749.
  • Cech TR, Steitz JA. The noncoding RNA revolution-trashing old rules to forge new ones. Cell. 2014;157:77–94.
  • Jiang B, Xie L, Zhang L, et al. Molecular marker lncRNAs ENST00000508241 for diagnosing glaucoma, reagent kit and application. CN106978507. 2017.
  • Jiang B, Xie L, Zhang L, et al. Molecular marker lncRNAs TCONS_00025577 for diagnosing glaucoma, reagent kit and application. CN106978508. 2017.
  • Jiang B, Xie L, Zhang L, et al. Molecular marker lncRNAs ENST00000607393 for diagnosing glaucoma, reagent kit and application. CN106978509. 2017.
  • Jiang B, Xie L, Zhang L, et al. Glaucoma diagnosis molecular marker lncRNAs NR_026887, kit and application. CN106987651. 2017.
  • Jiang B, Xie L, Zhang L, et al. Molecular marker IncRNAs ENST00000564363 for diagnosing glaucoma, kit and application. CN107034303. 2017.
  • Jiang B, Xie L, Zhang L, et al. Glaucoma diagnosis molecular marker lncRNAs T342877, kit and application. CN107043824. 2017.
  • Jiang B, Xie L, Zhang L, et al. Glaucoma diagnose molecular marker lncRNAsT267384, kit and application. CN107142316. 2017.
  • Ban N, Siegfried CJ, Apte RS. Monitoring neurodegeneration in glaucoma: therapeutic implications. Trends Mol Med. 2018;24:7–17.
  • Biomarkers Definitions Working Group. Biomarkers and surrogate end points: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69:89–95.
  • Galasko D. Biological markers and the treatment of Alzheimer’s disease. J Mol Neurosci. 2001;17:119–125.
  • Prentice RL. Surrogate end points in clinical trials: definition and operational criteria. Stat Med. 1989;8:431–440.
  • Apte RS, Yoshino J GDF15 in glaucoma and methods of use thereof. WO2017132673. 2017.
  • Ban N, Siegfried CJ, Lin JB, et al. GDF15 is elevated in mice following retinal ganglion cell death and in glaucoma patients. JCI Insight. 2017;2:91455.
  • Andrews R, Ressiniotis T, Turnbull DM, et al. The role of mitochondrial haplogroups in primary open angle glaucoma. Br J Ophthalmol. 2006;90:488–490.
  • Collins DW, Gudiseva HV, Trachtman B, et al. Association of primary open-angle glaucoma with mitochondrial variants and haplogroups common in African Americans. Mol Vis. 2016;22:454–471.
  • Abu-Amero KK, González AM, Osman EA, et al. Susceptibility to primary angle closure glaucoma in Saudi Arabia: the possible role of mitochondrial DNA ancestry informative haplogroups. Mol Vis. 2011;17:2171–2176.
  • Collins DW, Gudiseva VH, O’brien J, et al. Methods for screening and diagnosing glaucoma. WO2017189951. 2017.
  • Fridrich S, Karmilin K, Stöcker W. Handling Metalloproteinases. Curr Protoc Protein Sci. 2016;83:21.16.1–21.16.20.
  • Arolas JL, Broder C, Jefferson T, et al. Structural basis for the shed dase function of human meprin metalloproteinase at the plasma membrane. Proc Natl Acad Sci U S A. 2012;109:16131–16136.
  • Baker AH, Edwards DR, Murphy G. Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci. 2002;115:3719–3727.
  • Santamaria S, Nuti E, Cercignani G, et al. Kinetic characterization of 4,4ʹ-biphenylsulfonamides as selective non-zinc binding MMP inhibitors. J Enzyme Inhib Med Chem. 2015;30:947–954.
  • Bode W, Gomis-Ruth FX, Stockler W. Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the “metzincins.”. FEBS Lett. 1993;331:134–140.
  • Colige A, Li SW, Sieron AL, et al. cDNA cloning and expression of bovine procollagen I N-proteinase: a new member of the superfamily of zinc-metalloproteinases with binding sites for cells and other matrix components. Proc Natl Acad Sci USA. 1997;94:2374–2379.
  • Ra HJ, Parks WC. Control of matrix metalloproteinase catalytic activity. Matrix Biol. 2007;26:587–596.
  • Scozzafava A, Supuran CT. Protease inhibitors: synthesis of matrix metalloproteinase and bacterial collagenase inhibitors incorporating 5-amino-2-mercapto-1,3,4-thiadiazole zinc binding functions. Bioorg Med Chem Lett. 2002;12:2667–2672.
  • Guo MS, Wu YY, Liang ZB. Hyaluronic acid increases MMP-2 and MMP-9 expressions in cultured trabecular meshwork cells from patients with primary open-angle glaucoma. Mol Vis. 2012;18:1175–1181.
  • Knepper PA, Goossens W, Hvizd M, et al. Glycosaminoglycans of the human trabecular meshwork in primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 1996;37:1360–1367.
  • Khokhlova AS, Markelova EV, Dogadova LP, et al. Method for predicting rate of progression of glaucoma optic neuropathy. RU2665005. 2018.
  • Messmer EM, von Lindenfels V, Garbe A, et al. Matrix metalloproteinase 9 testing in dry eye disease using a commercially available point-of-care immunoassay. Ophthalmology. 2016;123:2300–2308.
  • Funke S, Beck S, Lorenz K, et al. Analysis of the effects of preservative-free tafluprost on the tear proteome. Am J Transl Res. 2016;8:4025–4039.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.