302
Views
54
CrossRef citations to date
0
Altmetric
Review

Carbonic anhydrase inhibition and the management of glaucoma: a literature and patent review 2013-2019

ORCID Icon, &
Pages 781-792 | Received 08 Sep 2019, Accepted 08 Oct 2019, Published online: 15 Oct 2019

References

  • Masini E, Carta F, Scozzafava A, et al. Antiglaucoma carbonic anhydrase inhibitors: a patent review. Expert Opin Ther Pat. 2013;23:705–716.
  • Zhang K, Zhang L, Weinreb RN. Ophthalmic drug discovery: novel targets and mechanisms for retinal disease and glaucoma. Nat Rev Drug Discov. 2012;11:541–559.
  • [cited 2019 Jun]. https://www.who.int/gho/urban_health/en/
  • Carta F, Supuran CT, Scozzafava A. Novel therapies for glaucoma: a patent review 2007–2011. Expert Opin Ther Pat. 2012;22:79–88.
  • Quigley HA. Glaucoma. Lancet. 2011;377:1367–1377.
  • Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90:151–156.
  • Vicente A, Prud’homme S, Ferreira J, et al. Open-angle glaucoma: drug development pipeline during the last 20 years (1995–2015). Ophthalmic Res. 2017;57(4):201–207.
  • [cited 2019 Jun]. https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=020597
  • [cited 2019 Jun]. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2006/021994s000TOC.cfm
  • Supuran CT, Scozzafava A, Casini A. Carbonic anhydrase inhibitors. Med Res Rev. 2003;23:146–189.
  • Alterio V, Di Fiore A, D’Ambrosio K, et al. Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms? Chem Rev. 2012;112:4421–4468.
  • Friedenwald JS. The formation of the intraocular fluid. Am J Ophthalmol. 1949;32:9–27.
  • Kinsey VE. Comparative chemistry of aqueous humor in posterior and anterior chambers of rabbit eye. Arch Ophthalmol. 1953;50:401–417.
  • Kinsey VE, Barany E. The rate flow of aqueous humor. II. Derivation of rate of flow and its physiologic significance. Am J Ophthalmol. 1949;32:189–202.
  • [cited 2019 Jun]. https://www.medicinenet.com/image-collection/eye_anatomy_detail_picture/picture.htm
  • Wistrand PJ. Carbonic anhydrase in the anterior uvea of the rabbit. Acta Physiol Scand. 1951;24:144–148.
  • Becker B. The mechanism of the fall in intraocular pressure by the carbonic anhydrase inhibitor Diamox. Am J Ophthalmol. 1955;39:177–183.
  • Kinsey VE, Reddy DVN. Turnover of total carbon dioxide in aqueous humors and the effect thereon of acetazolamide. Arch Ophthalmol. 1959;62:78–83.
  • Park CG, Kim YK, Kim SN, et al. Enhanced ocular efficacy of topically-delivered dorzolamide with nanostructured mucoadhesive microparticles. Int J Pharm. 2017;522(1–2):66–73.
  • Verma P, Gupta RN, Jha AK, et al. Development, in vitro and in vivo characterization of Eudragit RL 100 nanoparticles for improved ocular bioavailability of acetazolamide. Drug Deliv. 2013;20(7):269–276.
  • Singh J, Chhabra G, Pathak K. Development of acetazolamide-loaded, pH-triggered polymeric nanoparticulate in situ gel for sustained ocular delivery: in vitro. ex vivo evaluation and pharmacodynamic study. Drug Dev Ind Pharm. 2014;40(9):1223–1233.
  • Fu J, Sun F, Liu W, et al. Subconjunctival delivery of Dorzolamide-loaded poly(ether-anhydride) microparticles produces sustained lowering of intraocular pressure in rabbits. Mol Pharm. 2016;13(9):2987–2995.
  • Pitha I, Kimball EC, Oglesby EN, et al. Sustained Dorzolamide release prevents axonal and retinal ganglion cell loss in a rat model of IOP-glaucoma. Transl Vis Sci Technol. 2018;7(2):13.
  • Wang F, Chen L, Zhang D, et al. Methazolamide-loaded solid lipid nanoparticles modified with low-molecular weight chitosan for the treatment of glaucoma: vitro and vivo study. J Drug Target. 2014;22(9):849–858.
  • Kouchak M, Malekahmadi M, Bavarsad N, et al. Dorzolamide nanoliposome as a long action ophthalmic delivery system in open angle glaucoma and ocular hypertension patients. Drug Dev Ind Pharm. 2018;44(8):1239–1242.
  • Honda M, Asai T, Oku N, et al. Liposomes and nanotechnology in drug development: focus on ocular targets. Int J Nanomedicine. 2013;8:495.
  • Wong TT, Novack GD, Natarajan JV, et al. Nanomedicine for glaucoma: sustained release latanoprost offers a new therapeutic option with substantial benefits over eyedrops. Drug Deliv Transl Res. 2014;4(4):303–309.
  • Kouchak M, Bahmandar R, Bavarsad N, et al. Ocular Dorzolamide nanoliposomes for prolonged IOP reduction: in-vitro and in-vivo evaluation in rabbits. Iran J Pharm Res. 2016 Winter;15(1):205–212.
  • Fouda NH, Abdelrehim RT, Hegazy DA, et al. Sustained ocular delivery of Dorzolamide-HCl via proniosomal gel formulation: in-vitro characterization, statistical optimization, and in-vivo pharmacodynamic evaluation in rabbits. Drug Deliv. 2018;25(1):1340–1349.
  • Naguib SS, Hathout RM, Mansour S. Optimizing novel penetration enhancing hybridized vesicles for augmenting the in-vivo effect of an anti-glaucoma drug. Drug Deliv. 2017;24(1):99–108.
  • Manconi M, Caddeo C, Sinico C, et al. Penetration enhancer-containing vesicles: composition dependence of structural features and skin penetration ability. Eur J Pharm Biopharm. 2012;82(2):352–359.
  • Morsi N, Ibrahim M, Refai H, et al. Nanoemulsion-based electrolyte triggered in situ gel for ocular delivery of acetazolamide. Eur J Pharm Sci. 2017;104:302–314.
  • Sun J, Zhou Z. A novel ocular delivery of brinzolamide based on gellan gum: in vitro and in vivo evaluation. Drug Des Devel Ther. 2018;12:383–389.
  • Mora MJ, Tártara LI, Onnainty R, et al. Characterization, dissolution and in vivo evaluation of solid acetazolamide complexes. Carbohydr Polym. 2013;98(1):380–390.
  • Bragagni M, Bozdag M, Carta F, et al. Cyclodextrin complexation highly enhances efficacy of arylsulfonylureido benzenesulfonamide carbonic anhydrase inhibitors as a topical antiglaucoma agents. Bioorg Med Chem. 2015;23(18):6223–6227.
  • Mishra V, Jain NK. Acetazolamide encapsulated dendritic nano-architectures for effective glaucoma management in rabbits. Int J Pharm. 2014;461(1–2):380–390.
  • Mandar VS, Deepak B, Manish KS. Preservative-free ophthalmic pharmaceutical formulation. WO056149A1. 2015.
  • Carta F, Akdemir A, Scozzafava A, et al. Xanthates and trithiocarbonates strongly inhibit carbonic anhydrases and show antiglaucoma effects in vivo. J Med Chem. 2013;56(11):4691–4700.
  • Carta F, Aggarwal M, Maresca A, et al. Dithiocarbamates strongly inhibit carbonic anhydrases and show antiglaucoma action in vivo. J Med Chem. 2012;55(4):1721–1730.
  • Innocenti A, Scozzafava A, Supuran CT. Carbonic anhydrase inhibitors. Inhibition of cytosolic isoforms I, II, III, VII and XIII with less investigated inorganic anions. Bioorg Med Chem Lett. 2009;19:1855–1857.
  • Supuran CT, Scozzafava A, Masini E, et al. Carbonic anhydrase inhibitor comprising a dithiocarbamate. WO050426A1. 2013.
  • Bozdag M, Carta F, Vullo D, et al. Synthesis of a new series of dithiocarbamates with effective human carbonic anhydrase inhibitory activity and antiglaucoma action. Bioorg Med Chem. 2015;23(10):2368–2376.
  • Vullo D, Durante M, Di Leva FS, et al. Monothiocarbamates strongly inhibit carbonic anhydrases in vitro and possess intraocular pressure lowering activity in an animal model of glaucoma. J Med Chem. 2016;59(12):5857–5867.
  • Carta F, Osman SM, Vullo D, et al. Poly(amidoamine) dendrimers with carbonic anhydrase inhibitory activity and antiglaucoma action. J Med Chem. 2015;58(9):4039–4045.
  • Bozdag M, Ferraroni M, Carta F, et al. Structural insights on carbonic anhydrase inhibitory action, isoform selectivity, and potency of sulfonamides and coumarins incorporating arylsulfonylureido groups. J Med Chem. 2014;57(21):9152–9167.
  • Nathanson J. Nitrovasodilators as a new class of ocular hypotensive agents. J Pharmacol Exp Ther. 1992;260(3):956–965.
  • Benedini F, Biondi S, Ongini E. Carbonic anhydrase inhibitors derivatives. WO075155. 2008.
  • Huang Q, Rui EY. Inhibitors of carbonic anhydrase. WO007814. 2009.
  • Huang Q, Rui EY, Cobbs M, et al. Design, synthesis, and evaluation of NO-donor containing carbonic anhydrase inhibitors to lower intraocular pressure. J Med Chem. 2015;58(6):2821–2833.
  • Chegaev K, Lazzarato L, Tamboli Y, et al. Furazan and furoxan sulfonamides are strong α-carbonic anhydrase inhibitors and potential antiglaucoma agents. Bioorg Med Chem. 2014;22(15):3913–3921.
  • Nocentini A, Ceruso M, Bua S, et al. Discovery of β-Adrenergic receptors blocker-carbonic anhydrase inhibitor hybrids for multitargeted antiglaucoma therapy. J Med Chem. 2018;61(12):5380–5394.
  • Brooks AM, Gillies WE. Ocular beta-blockers in glaucoma management. Clinical pharmacological aspects. Drugs Aging. 1992;2:208−21.
  • Long DD, Frieman B, Hegde SS, et al. Multivalent approach towards linked dual-pharmacology prostaglandin F receptor agonist/carbonic anhydrase-II inhibitors for the treatment of glaucoma. Bioorg Med Chem Lett. 2013;23(4):939–943.
  • Angeli A, Supuran CT. Prostaglandin receptor agonists as antiglaucoma agents (a patent review 2013–2018. Expert Opin Ther Pat. 2019;1–11.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.