5,393
Views
26
CrossRef citations to date
0
Altmetric
Editorial

Antibiotic resistance and bacterial biofilm

, &
Pages 897-900 | Received 08 Aug 2020, Accepted 25 Sep 2020, Published online: 15 Oct 2020

References

  • Costerton JW. Introduction to biofilm. Int J Antimicrob Agents. 1999;11(3–4):217–221.
  • Hall‐Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2004;2:95–108.
  • Flemming HC, Wingender J, Szewzyk U, et al., Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016;14(9): 563–575.
  • Moscoso M, García E, López R. Biofilm formation by Streptococcus pneumoniae: role of choline, extracellular DNA, and capsular polysaccharide in microbial accretion. J Bacteriol. 2006;188(22):7785–7795.
  • Izano EA, Amarante MA, Kher WB, et al. Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Appl Environ Microbiol. 2008;74(2):470–476.
  • Hall-Stoodley L, Nistico L, Sambanthamoorthy K, et al. Characterization of biofilm matrix, degradation by DNase treatment and evidence of capsule downregulation in Streptococcus pneumoniae clinical isolates. BMC Microbiol. 2008;8:173.
  • Rice KC, Mann EE, Endres JL, et al. The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. Proc Natl Acad Sci U S A. 2007;104(19):8113–8118.
  • Grande R, Nistico L, Sambanthamoorthy K, et al. Temporal expression of agrB, cidA, and alsS in the early development of Staphylococcus aureus UAMS-1 biofilm formation and structural role of extracellular DNA and carbohydrates. Pathog Dis. 2014;70:414–422.
  • Vorkapic D, Pressler K, Schild S. Multifaceted roles of extracellular DNA in bacterial physiology. Curr Genet. 2016;62(1):71–79.
  • Renelli M, Matias V, Lo RY, et al. DNA-containing membrane vesicles of Pseudomonas aeruginosa PAO1 and their genetic transformation potential. Microbiology. 2004;150(Pt7):2161–2169.
  • Manning AJ, Kuehn MJ. Functional advantages conferred by extracellular prokaryotic membrane vesicles. J Mol Microbiol Biotechnol. 2013;23(1–2):131–141.
  • Grande R, Di Marcantonio MC, Robuffo I, et al. Helicobacter pylori ATCC 43629/NCTC 11639 outer membrane vesicles (OMVs) from biofilm and planktonic phase associated with extracellular DNA (eDNA). Front Microbiol. 2015;6:1369.
  • Puca V, Ercolino E, Celia C, et al. Detection and quantification of eDNA-associated bacterial membrane vesicles by flow cytometry. Int J Mol Sci. 2019;20(21):5307.
  • Webb JS, Lau M, Kjelleberg S. Bacteriophage and phenotypic variation in Pseudomonas aeruginosa biofilm development. J Bacteriol. 2004;186(23):8066–8073.
  • Yonezawa H, Osaki T, Kurata S, et al. Outer membrane vesicles of Helicobacter pylori TK1402 are involved in biofilm formation. BMC Microbiol. 2009;9(1):197.
  • Rieu A, Aoudia N, Jego G, et al. The biofilm mode of life boosts the anti‐inflammatory properties of Lactobacillus. Cell Microbiol. 2014;16(12):1836–1853.
  • Salas-Jara MJ, Ilabaca A, Vega M, et al. Biofilm forming Lactobacillus: new challenges for the development of probiotics. Microorganisms. 2016;4(3):35.
  • Chamignon C, Gueneau V, Medina S, et al. Evaluation of the probiotic properties and the capacity to form biofilms of various Lactobacillus strains. Microorganisms. 2020;8(7):1053.
  • Koo H, Allan RN, Howlin RP, et al., Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol. 2017;15(12): 740–755.
  • Parrino B, Schillaci D, Carnevale I, et al. Synthetic small molecules as antibiofilm agents in the struggle against antibiotic resistance. Eur J Med Chem. 2019;161:154–178.
  • Totsika M, Kostakioti M, Hannan TJ, et al. A FimH inhibitor prevents acute bladder infection and treats chronic cystitis caused by multidrug-resistant uropathogenic Escherichia coli ST131. J Infect Dis. 2013;208(6):921–928.
  • Nett JE, Cabezas-Olcoz J, Marchillo K, et al. Targeting fibronectin to disrupt in vivo Candida albicans biofilms. Antimicrob Agents Chemother. 2016;60(5):3152–3155.
  • Kaplan JB. Biofilm matrix-degrading enzymes. Methods Mol Biol. 2014;1147:203–213.
  • Fleming D, Chahin L, Rumbaugh K. Glycoside hydrolases degrade polymicrobial bacterial biofilms in wounds. Antimicrob Agents Chemother. 2017;61(2):e01998–16.
  • Okshevsky M, Regina VR, Meyer RL. Extracellular DNA as a target for biofilm control. Curr Opin Biotechnol. 2015;33:73–80.
  • Manzenreiter R, Kienberger F, Marcos V, et al. Ultrastructural characterization of cystic fibrosis sputum using atomic force and scanning electron microscopy. J Cyst Fibros. 2012;11(2):84–92.
  • Konstan MW, Ratjen F. Effect of dornase alfa on inflammation and lung function: potential role in the early treatment of cystic fibrosis. J Cyst Fibros. 2012;11(2):78–83.
  • Baelo A, Levato R, Julián E, et al. Disassembling bacterial extracellular matrix with DNase-coated nanoparticles to enhance antibiotic delivery in biofilm infections. J Control Release. 2015;209:150–158.
  • Krzyżek P, Grande R. Transformation of Helicobacter pylori into coccoid forms as a challenge for research determining activity of antimicrobial substances. Pathogens. 2020;9(3):184.
  • Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. 2004;275(1):177–182.
  • Jain J, Arora S, Rajwade JM, et al. Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol Pharm. 2009;6(5):1388–1401.
  • Puca V, Traini T, Guarnieri S, et al. The antibiofilm effect of a medical device containing TIAB on microorganisms associated with surgical site infection. Molecules. 2019;24(12):2280.
  • Grande R, Sisto F, Puca V, et al. Antimicrobial and antibiofilm activities of new synthesized silver ultra-nanoclusters (SUNCs) against Helicobacter pylori. Front Microbiol. 2020;11:1705.
  • Forier K, Raemdonck K, De Smedt SC, et al. Lipid and polymer nanoparticles for drug delivery to bacterial biofilms. J Control Release. 2014;190:607–623.
  • Rukavina Z, Current VŽ. Trends in development of liposomes for targeting bacterial biofilms. Pharmaceutics. 2016;8(2):18.
  • Lewis K, Ausubel FM. Prospects for plant-derived antibacterials. Nat Biotechnol. 2006;24(12):1504–1507.
  • HMA A, Sultan I, Kumar V, et al. Plant-based phytochemicals as possible alternative to antibiotics in combating bacterial drug resistance. Antibiotics (Basel). 2020;9(8):E480.
  • Zengin G, Menghini L, Di Sotto A, et al. Chromatographic analyses, in vitro biological activities, and cytotoxicity of Cannabis sativa L. essential oil: a multidisciplinary study. Molecules. 2018;23(12):3266.
  • Mocan A, Cairone F, Locatelli M, et al. Polyphenols from Lycium barbarum (goji) fruit european cultivars at different maturation steps: extraction, HPLC-DAD analyses, and biological evaluation. Antioxidants (Basel). 2019;8(11):562.
  • Semeniuc CA, Pop CR, Rotar AM. Antibacterial activity and interactions of plant essential oil combinations against Gram-positive and Gram-negative bacteria. J Food Drug Anal. 2017;25(2):403–408.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.