5,200
Views
2
CrossRef citations to date
0
Altmetric
Review

Coronavirus helicases: attractive and unique targets of antiviral drug-development and therapeutic patents

, , , , &
Pages 339-350 | Received 27 Nov 2020, Accepted 28 Jan 2021, Published online: 21 Apr 2021

References

  • Patel SS, Picha KM Structure and function of hexameric helicases. Annu Rev Biochem. 2000, 69, 651–697.
  • Ellis NA, Groden J, Ye TZ, et al. The bloom’s syndrome gene product is homologous to RecQ helicases. Cell 1995, 83, 655–666.
  • Karow JK, Chakraverty RK, Hickson ID The Bloom’s syndrome gene product is a 3ʹ-5ʹ DNA helicase. J Bio Chem. 1997, 272, 30611–30614.
  • Yu CE, Oshima J, Fu YH, et al. Positional cloning of the Werner’s syndrome gene. Science 1996, 272, 258–262.
  • Shen JC, Gray MD, Oshima J, et al. Characterization of Werner syndrome protein DNA helicase activity: directionality, substrate dependence and stimulation by replication protein A. Nucleic Acids Res. 1998, 26, 2879–2885.
  • Gray MD, Shen JC, Kamath-Loeb AS, et al. The Werner syndrome protein is a DNA helicase. Nat Genet. 1997, 17, 100–103.
  • Nakura J, Ye L, Morishima A, et al. Helicases and aging. Cell Mol Life Sci. 2000, 57, 716–730.
  • Cunniff C, Bassetti JA, Ellis NA Bloom’s syndrome: clinical spectrum, molecular pathogenesis, and cancer predisposition. Mol Syndromol. 2017, 8, 4–23.
  • Luo J Wrn protein and Werner syndrome. N Am J Med Sci (Boston) 2010, 3, 205–207.
  • Snijder EJ, Bredenbeek PJ, Dobbe JC, et al. Unique and conserved features of genome and proteome of SARS-coronavirus, an early split-off from the coronavirus group 2 lineage. J Mol Biol. 2003, 331, 991–1004.
  • Gorbalenya AE, Enjuanes L, Ziebuhr J, et al. Nidovirales: evolving the largest RNA virus genome. Virus Res. 2006, 117, 17–37.
  • Ivanov KA, Thiel V, Dobbe JC, et al. Multiple enzymatic activities associated with severe acute respiratory syndrome coronavirus helicase. J Virol. 2004, 78, 5619–5632.
  • Gorbalenya AE, Snijder EJ, Spaan WJ severe acute respiratory syndrome coronavirus phylogeny: toward consensus. J Virol. 2004, 78, 7863–7866.
  • Frick DN Step-by-step progress toward understanding the hepatitis C virus RNA helicase. Hepatology 2006, 43, 1392–1395.
  • Frick DN Helicases as antiviral drug targets. Drug News Perspect 2003, 16, 355–362.
  • Rota PA, Oberste MS, Monroe SS, et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 2003, 300, 1394–1399.
  • Marra MA, Jones SJ, Astell CR, et al. The genome sequence of the SARS-associated coronavirus. Science 2003, 300, 1399–1404.
  • Herold J, Siddell S, Ziebuhr J Characterization of coronavirus RNA polymerase gene products. Methods Enzymol. 1996, 275, 68–89.
  • Thiel V, Ivanov KA, Putics A, et al. Mechanisms and enzymes involved in SARS coronavirus genome expression. J Gen Virol. 2003, 84, 2305–2315.
  • Ziebuhr J The coronavirus replicase. Curr Top Microbiol Immunol. 2005, 287, 57–94.
  • Ziebuhr J Molecular biology of severe scute respiratory syndrome coronavirus. Curr Opin Microbiol 2004, 7, 412–419.
  • Putics A, Filipowicz W, Hall J, et al. ADP-ribose-1”-monophosphatase: a conserved coronavirus enzyme that is dispensable for viral replication in tissue culture. J Virol. 2005, 79, 12721–12731.
  • Perlman S, Netland J Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol 2009, 7, 439–450.
  • Navas-Martin SR, Weiss S Coronavirus replication and pathogenesis: implications for the recent outbreak of Severe Acute respiratory syndrome (SARS), and the challenge for vaccine development. J Neurovirol. 2004, 10, 75–85.
  • Harcourt BH, Jukneliene D, Kanjanahaluethai A, et al. Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity. J Virol. 2004, 78, 13600–13612.
  • Ziebuhr J, Snijder EJ, Gorbalenya AE Virus-encoded proteinases and proteolytic processing in the nidovirales. J Gen Virol. 2000, 81, 853–879.
  • Fan K, Wei P, Feng Q, et al. Biosynthesis, purification, and substrate specificity of severe acute respiratory syndrome coronavirus 3C-like proteinase. J Biol Chem. 2004, 279, 1637–1642.
  • Anand K, Ziebuhr J, Wadhwani P, et al. Coronavirus main proteinase (3Clpro) structure: basis for design of anti-SARS drugs. Science 2003, 300, 1763–1767.
  • Yang H, Yang M, Ding Y, et al. The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proc Natl Acad Sci U S A 2003, 100, 13190–13195.
  • Bernini A, Spiga O, Venditti V, et al. Tertiary structure prediction of SARS coronavirus helicase. Biochem Biophys Res Commun. 2006, 343, 1101–1104.
  • Minskaia E, Hertzig T, Gorbalenya AE, et al. Discovery of an RNA virus 3ʹ->5ʹ exoribonuclease that is critically involved in coronavirus RNA synthesis. Proc Natl Acad Sci U S A 2006, 103, 5108–5113.
  • Ricagno S, Egloff MP, Ulferts R, et al. Crystal structure and mechanistic determinants of SARS coronavirus nonstructural protein 15 define an endoribonuclease family. Proc Natl Acad Sci U S A 2006, 103, 11892–11897.
  • Bhardwaj K, Sun J, Holzenburg A, et al. RNA recognition and cleavage by the SARS coronavirus endoribonuclease. J Mol Biol. 2006, 361, 243–256.
  • Sawicki SG, Sawicki DL, Siddell SG A contemporary view of coronavirus transcription. J Virol. 2007, 81, 20–29.
  • Kumar V, Jung YS, Liang PH Anti-SARS coronavirus agents: a patent review (2008 – present). Expert Opin Therap Patents 2013, 23, 1337–1348.
  • Yan L, Ge J, Zheng L, et al. Cryo-Em structure of an extended SARS-CoV-2 replication and transcription complex reveals an intermediate state in cap synthesis. Cell 2021, 184, 184–193 e110.
  • von Brunn A, Teepe C, Simpson JC, et al. Analysis of intraviral protein-protein interactions of the SARS coronavirus ORFeome. PLoS One 2007, 2, e459.
  • Pan J, Peng X, Gao Y, et al. Genome-wide analysis of protein-protein interactions and involvement of viral proteins in SARS-CoV replication. PLoS One 2008, 3, e3299.
  • Prentice E, McAuliffe J, Lu X, et al. Identification and characterization of severe acute respiratory syndrome coronavirus replicase proteins. J Virol. 2004, 78, 9977–9986.
  • Imbert I, Snijder EJ, Dimitrova M, et al. The SARS-coronavirus plnc domain of nsp3 as a replication/transcription scaffolding protein. Virus Res. 2008, 133, 136–148.
  • Adedeji AO, Marchand B, Te Velthuis AJ, et al. Mechanism of nucleic acid unwinding by SARS-CoV helicase. PLoS One 2012, 7, e36521.
  • Romano M, Ruggiero A, Squeglia F, et al. A structural view of SARS-CoV-2 RNA replication machinery: RNA synthesis, proofreading and final capping. Cells 2020, 9. 9
  • Yan L, Zhang Y, Ge J, et al. Architecture of a SARS-CoV-2 mini replication and transcription complex. Nat Commun. 2020, 11, 5874.
  • Xia H, Cao Z, Xie X, et al. Evasion of type i interferon by SARS-CoV-2. Cell Rep. 2020, 33, 108234.
  • Appelberg S, Gupta S, Svensson Akusjarvi S, et al. Dysregulation in akt/mtor/hif-1 signaling identified by proteo-transcriptomics of SARS-CoV-2 infected cells. Emerg Microbes Infect. 2020, 9, 1748–1760.
  • Yuen CK, Lam JY, Wong WM, et al. SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists. Emerg Microbes Infect. 2020, 9, 1418–1428.
  • Singleton MR, Wigley DB Modularity and specialization in superfamily 1 and 2 helicases. J Bacteriol. 2002, 184, 1819–1826.
  • Gorbalenya AE, Koonin EV Viral proteins containing the purine NTP-binding sequence pattern. Nucleic Acids Res. 1989, 17, 8413–8440.
  • Chen J, Malone B, Llewellyn E, et al. Structural basis for helicase-polymerase coupling in the SARS-CoV-2 replication-transcription complex. Cell 2020, 182, 1560–1573 e1513.
  • Lee NR, Kwon HM, Park K, et al. Cooperative translocation enhances the unwinding of duplex DNA by SARS coronavirus helicase nsp13. Nucleic Acids Res. 2010, 38, 7626–7636.
  • Tanner JA, Watt RM, Chai YB, et al. The severe acute respiratory syndrome (SARS) coronavirus NTPase/helicase belongs to a distinct class of 5ʹ to 3ʹ viral helicases. J Biol Chem 2003, 278, 39578–39582.
  • Flores MJ, Sanchez N, Michel B A fork-clearing role for uvrd. Mol Microbiol. 2005, 57, 1664–1675.
  • Hao W, Wojdyla JA, Zhao R, et al. Crystal structure of Middle East respiratory syndrome coronavirus helicase. PLoS Pathog 2017, 13, e1006474.
  • Jia Z, Yan L, Ren Z, et al. Delicate structural coordination of the severe acute respiratory syndrome coronavirus nsp13 upon ATP hydrolysis. Nucleic Acids Res. 2019, 47, 6538–6550.
  • Seybert A, Posthuma CC, van Dinten LC, et al. A complex zinc finger controls the enzymatic activities of nidovirus helicases. J Virol. 2005, 79, 696–704.
  • van Dinten LC, van Tol H, Gorbalenya AE, et al. The predicted metal-binding region of the arterivirus helicase protein is involved in subgenomic mRNA synthesis, genome replication, and virion biogenesis. J Virol. 2000, 74, 5213–5223.
  • DeLano WL An open-source molecular graphics tool. Ccp4 Newsl Protein Crystallogr 2002, 40, 82–92.
  • Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273.
  • Boni MF, Lemey P, Jiang X, et al. Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic. Nature Microbiol. 2020, 5, 1408–1417.
  • Neogi U, Hill KJ, Ambikan AT, et al. Feasibility of known RNA polymerase inhibitors as anti-SARS-CoV-2 drugs. Pathogens 2020, 9. 9
  • Yu G, Lam TT, Zhu H, et al. Two methods for mapping and visualizing associated data on phylogeny using ggtree. Mol Biol Evol. 2018, 35, 3041–3043.
  • Team RC R: a language and environment for statistical computing. R foundation for statistical computing, vienna, austria. Isbn 3–900051–07–0. http://www.R-project.org 2013.
  • Adedeji AO, Singh K, Calcaterra NE, et al. Severe Acute Respiratory Syndrome coronavirus replication inhibitor that interferes with the nucleic acid unwinding of the viral helicase. Antimicrob Agents Chemother. 2012, 56, 4718–4728.
  • Adedeji AO, Singh K, Kassim A, et al. Evaluation of SSYA10–001 as a replication inhibitor of severe acute respiratory syndrome, mouse hepatitis, and Middle East respiratory syndrome coronaviruses. Antimicrob Agents Chemother. 2014, 58, 4894–4898.
  • Backman TW, Cao Y, Girke T Chemmine tools: an online service for analyzing and clustering small molecules. Nucleic Acids Res 2011, 39, W486–491.
  • Rogers DJ, Tanimoto TT A computer program for classifying plants. Science 1960, 132, 1115–1118.
  • O’Boyle NM, Banck M, James CA, et al. Open BABEL: an open chemical toolbox. J Chem inform. 2011, 3, 33.
  • Cao Y, Charisi A, Cheng LC, et al. Chemminer: a compound mining framework for R. Bioinformatics 2008, 24, 1733–1734.
  • Yu MS, Lee J, Lee JM, et al. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsp13. Bioorg Med Chem Lett. 2012, 22, 4049–4054.
  • Keum YS, Jeong YJ Development of chemical inhibitors of the SARS coronavirus: viral helicase as a potential target. Biochem Pharmacol. 2012, 84, 1351–1358.
  • Di Santo R, Fermeglia M, Ferrone M, et al. Simple but highly effective three-dimensional chemical-feature-based pharmacophore model for diketo acid derivatives as hepatitis C virus RNA-dependent RNA polymerase inhibitors. J Med Chem. 2005, 48, 6304–6314.
  • Lee JM, Cho JB, Ahn HC, et al. A novel chemical compound for inhibition of SARS coronavirus helicase. J Microbiol Biotechnol. 2017, 27, 2070–2073.
  • Cho JB, Lee JM, Ahn HC, et al. Identification of a novel small molecule inhibitor against SARS coronavirus helicase. J Microbiol Biotechnol. 2015, 25, 2007–2010.
  • Tanner JA, Zheng BJ, Zhou J, et al. The adamantane-derived bananins are potent inhibitors of the helicase activities and replication of SARS coronavirus. Chem Biol. 2005, 12, 303–311.
  • Yang N, Tanner JA, Wang Z, et al. Inhibition of SARS coronavirus helicase by bismuth complexes. Chem Commun (Camb) 2007, 4413–4415.
  • Lee C, Lee JM, Lee NR, et al. Investigation of the pharmacophore space of severe acute respiratory syndrome coronavirus (SARS-CoV) ntpase/helicase by dihydroxychromone derivatives. Bioorg Med Chem Lett. 2009, 19, 4538–4541.
  • Shum KT, Tanner JA Differential inhibitory activities and stabilisation of DNA aptamers against the SARS coronavirus helicase. Chembiochem. 2008, 9, 3037–3045.
  • Yang N, Tanner JA, Zheng BJ, et al. Bismuth complexes inhibit the SARS coronavirus. Angew Chem Int Ed Eng. 2007, 46, 6464–6468.
  • Lee C, Lee JM, Lee NR, et al. Aryl diketoacids (adk) selectively inhibit duplex DNA-unwinding activity of SARS coronavirus NTPase/helicase. Bioorg Med Chem Lett. 2009, 19, 1636–1638.
  • Lee JM, Cho JB, Ahn HC, et al. Selective inhibition of enzymatic activities of severe acute respiratory syndrome coronavirus helicase with a thioxopyrimidine derivative. Bull Korean Chem Soc. 2016, 37, 2066–2068.
  • Jang KJ, Lee NR, Yeo WS, et al. Isolation of inhibitory RNA aptamers against severe acute respiratory syndrome (SARS) coronavirus NTPase/helicase. Biochem Biophys Res Commun. 2008, 366, 738–744.
  • Shu T, Huang M, Wu D, et al. SARS-coronavirus-2 nsp13 possesses ntpase and RNA helicase activities that can be inhibited by bismuth salts. Virol Sin. 2020, 35, 321–329.
  • Chono K, Katsumata K, Kontani T, et al. Asp2151, a novel helicase-primase inhibitor, possesses antiviral activity against varicella-zoster virus and herpes simplex virus types 1 and 2. J Antimicrob Chemother. 2010, 65, 1733–1741.
  • Katsumata K, Weinberg A, Chono K, et al. Susceptibility of herpes simplex virus isolated from genital herpes lesions to Asp2151, a novel helicase-primase inhibitor. Antimicrob Agents Chemother. 2012, 56, 3587–3591.
  • Tyring S, Wald A, Zadeikis N, et al. Asp2151 for the treatment of genital herpes: a randomized, double-blind, placebo- and valacyclovir-controlled, dose-finding study. J Infect Dis. 2012, 205, 1100–1110.
  • Wald A, Corey L, Timmler B, et al. Helicase-primase inhibitor pritelivir for HSV-2 infection. N Eng J Med. 2014, 370, 201–210.
  • Aicuris. A double-blind randomized placebo controlled dose-finding trial to investigate different doses of a new antiviral drug in subjects with genital HSV type 2 infection. Clin trial. 2011; NCT01047540. available from: http://clinicaltrials.Gov/ct2/results?Term=nct01047540&
  • Weller SK, Kuchta RD The DNA helicase-primase complex as a target for herpes viral infection. Expert Opin Ther Targets 2013, 17, 1119–1132.
  • Datta A, Brosh RM Jr. New insights into DNA helicases as druggable targets for cancer therapy. Front Mol Biosci. 2018, 5, 59.
  • Belon CA, Frick DN Helicase inhibitors as specifically targeted antiviral therapy for hepatitis C. Future Virol. 2009, 4, 277–293.
  • Guo F, Stanevich V, Wlodarchak N, et al. Structural basis of PP2A activation by PTPA, an ATP-dependent activation chaperone. Cell Res. 2014, 24, 190–203.
  • Beese LS, Steitz TA Structural basis for the 3ʹ-5ʹ exonuclease activity of Escherichia coli DNA polymerase i: a two metal ion mechanism. Embo J. 1991, 10, 25–33.
  • Copeland WC The mitochondrial DNA polymerase in health and disease. Subcell Biochem. 2010, 50, 211–222.
  • Lewis W, Simpson JF, Meyer RR Cardiac mitochondrial DNA polymerase-gamma is inhibited competitively and noncompetitively by phosphorylated zidovudine. Circ Res. 1994, 74, 344–348.
  • Lewis W, Day BJ, Copeland WC Mitochondrial toxicity of NRTI antiviral drugs: an integrated cellular perspective. Nat Rev Drug Discov. 2003, 2, 812–822.
  • Engelman A, Cherepanov P Retroviral integrase structure and DNA recombination mechanism. Microbiol Spectr. 2014, 2, 1–22.
  • Maskell DP, Renault L, Serrao E, et al. Structural basis for retroviral integration into nucleosomes. Nature 2015, 523, 366–369.
  • Engelman A, Cherepanov P The structural biology of HIV-1: mechanistic and therapeutic insights. Nat Rev Microbiol. 2012, 10, 279–290.
  • Deng Z, Lehmann KC, Li X, et al. Structural basis for the regulatory function of a complex zinc-binding domain in a replicative arterivirus helicase resembling a nonsense-mediated mRNA decay helicase. Nucleic Acids Res. 2014, 42, 3464–3477.
  • Tang C, Deng Z, Li X, et al. Helicase of type 2 porcine reproductive and respiratory syndrome virus strain HV reveals a unique structure. Viruses 2020, 12. 12
  • Ruiz FX, Hoang A, Das K, et al. Structural basis of HIV-1 inhibition by nucleotide-competing reverse transcriptase inhibitor indopy-1. J Med Chem. 2019, 62, 9996–10002.
  • Singh K, Flores JA, Kirby KA, et al. Drug resistance in non-B subtype HIV-1: impact of HIV-1 reverse transcriptase inhibitors. Viruses 2014, 6, 3535–3562.
  • Das K, Bauman JD, Clark AD Jr., et al. High-resolution structures of HIV-1 reverse transcriptase/TMC278 complexes: strategic flexibility explains potency against resistance mutations. Proc Natl Acad Sci U S A 2008, 105, 1466–1471.
  • Janssen PA, Lewi PJ, Arnold E, et al. In search of a novel anti-HIV drug: multidisciplinary coordination in the discovery of 4-[[4-[[4-[(1e)-2-cyanoethenyl]-2,6-dimethylphenyl]amino]-2- pyrimidinyl]amino]benzonitrile (R278474, rilpivirine). J Med Chem. 2005, 48, 1901–1909.
  • Singh K, Marchand B, Rai DK, et al. Biochemical mechanism of HIV-1 resistance to rilpivirine. J Biol Chem. 2012, 287, 38110–38123.
  • Haggblom A, Svedhem V, Singh K, et al. Virological failure in patients with HIV-1 subtype c receiving antiretroviral therapy: an analysis of a prospective national cohort in Sweden. Lancet HIV 2016, 3, e166–174.
  • van Domselaar R, Njenda DT, Rao R, et al. HIV-1 subtype C with PYxE insertion has enhanced binding of Gag-p6 to host cell protein ALIX and increased replication fitness. J Virol. 2019, 93. 93
  • Kannan SR, Spratt AN, Quinn TP, et al. Infectivity of SARS-CoV-2: there is something more than D614G? J Neuroimmune Pharmacol. 2020. 15 574–577