675
Views
17
CrossRef citations to date
0
Altmetric
Review

Investigational α-synuclein aggregation inhibitors: hope for Parkinson’s disease

, , &
Pages 1281-1294 | Received 31 Mar 2016, Accepted 13 Sep 2016, Published online: 08 Oct 2016

References

  • de Rijk MC, Launer LJ, Berger K, et al. Prevalence of Parkinson’s disease in Europe: a collaborative study of population-based cohorts. Neurologic diseases in the elderly research group. Neurology. 2000;54(11 Suppl 5):S21–S23.
  • Trinh J, Farrer M. Advances in the genetics of Parkinson disease. Nat Rev Neurol. 2013 Aug;9(8):445–454.
  • Walker Z, Possin KL, Boeve BF, et al. Lewy body dementias. Lancet. 2015 Oct 24;386(10004):1683–1697.
  • Wakabayashi K, Tanji K, Mori F, et al. The Lewy body in Parkinson’s disease: molecules implicated in the formation and degradation of alpha-synuclein aggregates. Neuropathology. 2007 Oct;27(5):494–506.
  • Tanaka M, Kim YM, Lee G, et al. Aggresomes formed by alpha-synuclein and synphilin-1 are cytoprotective. J Biol Chem. 2004 Feb 6;279(6):4625–4631.
  • Kramer ML, Schulz-Schaeffer WJ. Presynaptic alpha-synuclein aggregates, not Lewy bodies, cause neurodegeneration in dementia with Lewy bodies. J Neurosci. 2007 Feb 7;27(6):1405–1410.
  • Winner B, Jappelli R, Maji SK, et al. In vivo demonstration that alpha-synuclein oligomers are toxic. Proc Natl Acad Sci U S A. 2011 Mar 8;108(10):4194–4199.
  • Danzer KM, Haasen D, Karow AR, et al. Different species of alpha-synuclein oligomers induce calcium influx and seeding. J Neurosci. 2007 Aug 22;27(34):9220–9232.
  • Colla E, Coune P, Liu Y, et al. Endoplasmic reticulum stress is important for the manifestations of alpha-synucleinopathy in vivo. J Neurosci. 2012 Mar 7;32(10):3306–3320.
  • Zhang W, Wang T, Pei Z, et al. Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J. 2005 Apr;19(6):533–542.
  • Wilms H, Rosenstiel P, Romero-Ramos M, et al. Suppression of MAP kinases inhibits microglial activation and attenuates neuronal cell death induced by alpha-synuclein protofibrils. Int J Immunopathol Pharmacol. 2009 Oct-Dec;22(4):897–909.
  • Diogenes MJ, Dias RB, Rombo DM, et al. Extracellular alpha-synuclein oligomers modulate synaptic transmission and impair LTP via NMDA-receptor activation. J Neurosci. 2012 Aug 22;32(34):11750–11762.
  • Ebrahimi-Fakhari D, Wahlster L, McLean PJ. Protein degradation pathways in Parkinson’s disease: curse or blessing. Acta Neuropathol. 2012 Aug;124(2):153–172.
  • Maroteaux L, Campanelli JT, Scheller RH. Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci. 1988 Aug;8(8):2804–2815.
  • Lesage S, Brice A. Parkinson’s disease: from monogenic forms to genetic susceptibility factors. Hum Mol Genet. 2009 Apr 15;18(R1):R48–R59.
  • Singleton AB, Farrer M, Johnson J, et al. alpha-Synuclein locus triplication causes Parkinson’s disease. Science. 2003 Oct 31;302(5646):841.
  • Farrer M, Kachergus J, Forno L, et al. Comparison of kindreds with parkinsonism and alpha-synuclein genomic multiplications. Ann Neurol. 2004 Feb;55(2):174–179.
  • Chartier-Harlin MC, Kachergus J, Roumier C, et al. Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet. 2004 Sep 25-Oct 1;364(9440):1167–1169.
  • Ibáñez P, Bonnet A-M, Débarges B, et al. Causal relation between alpha-synuclein gene duplication and familial Parkinson’s disease. Lancet. 2004 Sep 25-Oct 1;364(9440):1169–1171.
  • Lemkau LR, Comellas G, Kloepper KD, et al. Mutant protein A30P alpha-synuclein adopts wild-type fibril structure, despite slower fibrillation kinetics. J Biol Chem. 2012 Mar 30;287(14):11526–11532.
  • Sahay S, Ghosh D, Singh PK, et al. Alteration of structure and aggregation of a-synuclein by familial Parkinson’s disease associated mutations. Curr Protein Pept Sci. 2016 Mar 14;[Epub ahead of print].
  • Conway KA, Lee SJ, Rochet JC, et al. Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc Natl Acad Sci U S A. 2000 Jan 18;97(2):571–576.
  • Conway KA, Harper JD, Lansbury PT. Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med. 1998 Nov;4(11):1318–1320.
  • Greenbaum EA, Graves CL, Mishizen-Eberz AJ, et al. The E46K mutation in alpha-synuclein increases amyloid fibril formation. J Biol Chem. 2005 Mar 4;280(9):7800–7807.
  • Ghosh D, Mondal M, Mohite GM, et al. The Parkinson’s disease-associated H50Q mutation accelerates alpha-Synuclein aggregation in vitro. Biochemistry. 2013 Oct 8;52(40):6925–6927.
  • Fares MB, Ait-Bouziad N, Dikiy I, et al. The novel Parkinson’s disease linked mutation G51D attenuates in vitro aggregation and membrane binding of alpha-synuclein, and enhances its secretion and nuclear localization in cells. Hum Mol Genet. 2014 Sep 1;23(17):4491–4509.
  • Pasanen P, Myllykangas L, Siitonen M, et al. Novel alpha-synuclein mutation A53E associated with atypical multiple system atrophy and Parkinson’s disease-type pathology. Neurobiol Aging. 2014 Sep;35(9):2180e1–2180e5.
  • Ghosh D, Sahay S, Ranjan P, et al. The newly discovered Parkinson’s disease associated Finnish mutation (A53E) attenuates alpha-synuclein aggregation and membrane binding. Biochemistry. 2014 Oct 21;53(41):6419–6421.
  • Rutherford NJ, Giasson BI. The A53E alpha-synuclein pathological mutation demonstrates reduced aggregation propensity in vitro and in cell culture. Neurosci Lett. 2015 Jun 15;597:43–48.
  • Fauvet B, Mbefo MK, Fares MB, et al. alpha-Synuclein in central nervous system and from erythrocytes, mammalian cells, and Escherichia coli exists predominantly as disordered monomer. J Biol Chem. 2012 May 4;287(19):15345–15364.
  • Wang W, Perovic I, Chittuluru J, et al. A soluble alpha-synuclein construct forms a dynamic tetramer. Proc Natl Acad Sci U S A. 2011 Oct 25;108(43):17797–17802.
  • Bartels T, Choi JG, Selkoe DJ. alpha-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature. 2011 Sep 1;477(7362):107–110.
  • Giasson BI, Murray IV, Trojanowski JQ, et al. A hydrophobic stretch of 12 amino acid residues in the middle of alpha-synuclein is essential for filament assembly. J Biol Chem. 2001 Jan 26;276(4):2380–2386.
  • Bussell R Jr., Eliezer D. Residual structure and dynamics in Parkinson’s disease-associated mutants of alpha-synuclein. J Biol Chem. 2001 Dec 7;276(49):45996–46003.
  • Lavedan C. The synuclein family. Genome Res. 1998 Sep;8(9):871–880.
  • Souza JM, Giasson BI, Chen Q, et al. Dityrosine cross-linking promotes formation of stable alpha -synuclein polymers. Implication of nitrative and oxidative stress in the pathogenesis of neurodegenerative synucleinopathies. J Biol Chem. 2000 Jun 16;275(24):18344–18349.
  • Cavallarin N, Vicario M, Negro A. The role of phosphorylation in synucleinopathies: focus on Parkinson’s disease. CNS Neurol Disord Drug Targets. 2010 Aug;9(4):471–481.
  • Celej MS, Sarroukh R, Goormaghtigh E, et al. Toxic prefibrillar alpha-synuclein amyloid oligomers adopt a distinctive antiparallel beta-sheet structure. Biochem J. 2012 May 1;443(3):719–726.
  • Wood SJ, Wypych J, Steavenson S, et al. alpha-synuclein fibrillogenesis is nucleation-dependent. Implications for the pathogenesis of Parkinson’s disease. J Biol Chem. 1999 Jul 9;274(28):19509–19512.
  • Margittai M, Langen R. Fibrils with parallel in-register structure constitute a major class of amyloid fibrils: molecular insights from electron paramagnetic resonance spectroscopy. Q Rev Biophys. 2008 Aug-Nov;41(3–4):265–297.
  • Zarranz JJ, Alegre J, Gomez-Esteban JC, et al. The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol. 2004 Feb;55(2):164–173.
  • Kruger R, Kuhn W, Muller T, et al. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet. 1998 Feb;18(2):106–108.
  • Terzioglu M, Galter D. Parkinson’s disease: genetic versus toxin-induced rodent models. FEBS J. 2008 Apr;275(7):1384–1391.
  • Chesselet M-F. In vivo alpha-synuclein overexpression in rodents: a useful model of Parkinson’s disease? Exp Neurol. 2008 Jan;209(1):22–27.
  • Meredith GE, Sonsalla PK, Chesselet M-F. Animal models of Parkinson’s disease progression. Acta Neuropathol. 2008 Apr;115(4):385–398.
  • van der Putten H, Wiederhold KH, Probst A, et al. Neuropathology in mice expressing human alpha-synuclein. J Neurosci. 2000 Aug 15;20(16):6021–6029.
  • Giasson BI, Duda JE, Quinn SM, et al. Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. Neuron. 2002 May 16;34(4):521–533.
  • Lo Bianco C, Ridet JL, Schneider BL, et al. alpha -Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson’s disease. Proc Natl Acad Sci U S A. 2002 Aug 6;99(16):10813–10818.
  • Lauwers E, Debyser Z, Van Dorpe J, et al. Neuropathology and neurodegeneration in rodent brain induced by lentiviral vector-mediated overexpression of alpha-synuclein. Brain Pathol. 2003 Jul;13(3):364–372.
  • Luk KC, Kehm V, Carroll J, et al. Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science. 2012 Nov 16;338(6109):949–953.
  • Decressac M, Mattsson B, Lundblad M, et al. Progressive neurodegenerative and behavioural changes induced by AAV-mediated overexpression of alpha-synuclein in midbrain dopamine neurons. Neurobiol Dis. 2012 Mar;45(3):939–953.
  • Ebrahimi-Fakhari D, Cantuti-Castelvetri I, Fan Z, et al. Distinct roles in vivo for the ubiquitin-proteasome system and the autophagy-lysosomal pathway in the degradation of alpha-synuclein. J Neurosci. 2011 Oct 12;31(41):14508–14520.
  • Zou J, Guo Y, Guettouche T, et al. Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell. 1998 Aug 21;94(4):471–480.
  • Uryu K, Richter-Landsberg C, Welch W, et al. Convergence of heat shock protein 90 with ubiquitin in filamentous alpha-synuclein inclusions of alpha-synucleinopathies. Am J Pathol. 2006 Mar;168(3):947–961.
  • Auluck PK, Chan HY, Trojanowski JQ, et al. Chaperone suppression of alpha-synuclein toxicity in a Drosophila model for Parkinson’s disease. Science. 2002 Feb 1;295(5556):865–868.
  • Leverenz JB, Umar I, Wang Q, et al. Proteomic identification of novel proteins in cortical lewy bodies. Brain Pathol. 2007 Apr;17(2):139–145.
  • McLean PJ, Kawamata H, Shariff S, et al. TorsinA and heat shock proteins act as molecular chaperones: suppression of alpha-synuclein aggregation. J Neurochem. 2002 Nov;83(4):846–854.
  • Quigney DJ, Gorman AM, Samali A. Heat shock protects PC12 cells against MPP+ toxicity. Brain Res. 2003 Dec 12;993(1–2):133–139.
  • Fan GH, Zhou HY, Yang H, et al. Heat shock proteins reduce alpha-synuclein aggregation induced by MPP+ in SK-N-SH cells. FEBS Lett. 2006 May 29;580(13):3091–3098.
  • Tantucci M, Mariucci G, Taha E, et al. Induction of heat shock protein 70 reduces the alteration of striatal electrical activity caused by mitochondrial impairment. Neuroscience. 2009 Oct 20;163(3):735–740.
  • Flower TR, Chesnokova LS, Froelich CA, et al. Heat shock prevents alpha-synuclein-induced apoptosis in a yeast model of Parkinson’s disease. J Mol Biol. 2005 Sep 2;351(5):1081–1100.
  • Shen HY, He JC, Wang Y, et al. Geldanamycin induces heat shock protein 70 and protects against MPTP-induced dopaminergic neurotoxicity in mice. J Biol Chem. 2005 Dec 2;280(48):39962–39969.
  • Kalia SK, Kalia LV, McLean PJ. Molecular chaperones as rational drug targets for Parkinson’s disease therapeutics. CNS Neurol Disord Drug Targets. 2010 Dec;9(6):741–753.
  • Benarroch EE. Heat shock proteins: multiple neuroprotective functions and implications for neurologic disease. Neurology. 2011 Feb 15;76(7):660–667.
  • Kim YS, Alarcon SV, Lee S, et al. Update on Hsp90 inhibitors in clinical trial. Curr Top Med Chem. 2009;9(15):1479–1492.
  • Auluck PK, Meulener MC, Bonini NM. Mechanisms of suppression of {alpha}-synuclein neurotoxicity by geldanamycin in drosophila. J Biol Chem. 2005 Jan 28;280(4):2873–2878.
  • McLean PJ, Klucken J, Shin Y, et al. Geldanamycin induces Hsp70 and prevents alpha-synuclein aggregation and toxicity in vitro. Biochem Biophys Res Commun. 2004 Aug 27;321(3):665–669.
  • Bao XQ, Wu LY, Wang XL, et al. Squamosamide derivative FLZ protected tyrosine hydroxylase function in a chronic MPTP/probenecid mouse model of Parkinson’s disease. Naunyn Schmiedebergs Arch Pharmacol. 2015 May;388(5):549–556.
  • Kong XC, Zhang D, Qian C, et al. FLZ, a novel HSP27 and HSP70 inducer, protects SH-SY5Y cells from apoptosis caused by MPP(+). Brain Res. 2011 Apr 6;1383:99–107.
  • Zhang D, Zhang -J-J, Liu G-T. The novel squamosamide derivative (compound FLZ) attenuated 1-methyl, 4-phenyl-pyridinium ion (MPP+)-induced apoptosis and alternations of related signal transduction in SH-SY5Y cells. Neuropharmacology. 2007 Feb;52(2):423–429.
  • Ebrahimi-Fakhari D, Wahlster L, McLean PJ. Molecular chaperones in Parkinson’s disease–present and future. J Parkinsons Dis. 2011;1(4):299–320.
  • Dong Z, Wolfer DP, Lipp HP, et al. Hsp70 gene transfer by adeno-associated virus inhibits MPTP-induced nigrostriatal degeneration in the mouse model of Parkinson disease. Mol Ther. 2005 Jan;11(1):80–88.
  • Jung AE, Fitzsimons HL, Bland RJ, et al. HSP70 and constitutively active HSF1 mediate protection against CDCrel-1-mediated toxicity. Mol Ther. 2008 Jun;16(6):1048–1055.
  • Dietz GP. Cell-penetrating peptide technology to deliver chaperones and associated factors in diseases and basic research. Curr Pharm Biotechnol. 2010 Feb;11(2):167–174.
  • Nagel F, Falkenburger BH, Tonges L, et al. Tat-Hsp70 protects dopaminergic neurons in midbrain cultures and in the substantia nigra in models of Parkinson’s disease. J Neurochem. 2008 May;105(3):853–864.
  • Hou Y, Zou J. Delivery of HSF1(+) protein using HIV-1 TAT protein transduction domain. Mol Biol Rep. 2009 Nov;36(8):2271–2277.
  • Kim SA, Chang S, Yoon JH, et al. TAT-Hsp40 inhibits oxidative stress-mediated cytotoxicity via the inhibition of Hsp70 ubiquitination. FEBS Lett. 2008 Mar 5;582(5):734–740.
  • Bergstrom AL, Kallunki P, Fog K. Development of Passive Immunotherapies for Synucleinopathies. Mov Disord. 2016 Feb;31(2):203–213.
  • Masliah E, Rockenstein E, Mante M, et al. Passive immunization reduces behavioral and neuropathological deficits in an alpha-synuclein transgenic model of Lewy body disease. PLoS One. 2011;6(4):e19338.
  • Bae EJ, Lee HJ, Rockenstein E, et al. Antibody-aided clearance of extracellular alpha-synuclein prevents cell-to-cell aggregate transmission. J Neurosci. 2012 Sep 26;32(39):13454–13469.
  • Games D, Valera E, Spencer B, et al. Reducing C-terminal-truncated alpha-synuclein by immunotherapy attenuates neurodegeneration and propagation in Parkinson’s disease-like models. J Neurosci. 2014 Jul 9;34(28):9441–9454.
  • Lindstrom V, Fagerqvist T, Nordstrom E, et al. Immunotherapy targeting alpha-synuclein protofibrils reduced pathology in (Thy-1)-h[A30P] alpha-synuclein mice. Neurobiol Dis. 2014;69:134–143.
  • Tran HT, Chung CH, Iba M, et al. Alpha-synuclein immunotherapy blocks uptake and templated propagation of misfolded alpha-synuclein and neurodegeneration. Cell Rep. 2014 Jun 26;7(6):2054–2065.
  • Shahaduzzaman M, Nash K, Hudson C, et al. Anti-human alpha-synuclein N-terminal peptide antibody protects against dopaminergic cell death and ameliorates behavioral deficits in an AAV-alpha-synuclein rat model of Parkinson’s disease. PLoS One. 2015;10(2):e0116841.
  • Schneeberger A, Tierney L, Mandler M. Active immunization therapies for Parkinson’s disease and multiple system atrophy. Mov Disord. 2016 Feb;31(2):214–224.
  • Mandler M, Valera E, Rockenstein E, et al. Next-generation active immunization approach for synucleinopathies: implications for Parkinson’s disease clinical trials. Acta Neuropathol. 2014;127(6):861–879.
  • Chen L, Feany MB. Alpha-synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease. Nat Neurosci. 2005 May;8(5):657–663.
  • Smith WW, Margolis RL, Li X, et al. Alpha-synuclein phosphorylation enhances eosinophilic cytoplasmic inclusion formation in SH-SY5Y cells. J Neurosci. 2005 Jun 8;25(23):5544–5552.
  • Kragh CL, Lund LB, Febbraro F, et al. Alpha-synuclein aggregation and Ser-129 phosphorylation-dependent cell death in oligodendroglial cells. J Biol Chem. 2009 Apr 10;284(15):10211–10222.
  • Chen L, Periquet M, Wang X, et al. Tyrosine and serine phosphorylation of alpha-synuclein have opposing effects on neurotoxicity and soluble oligomer formation. J Clin Invest. 2009 Nov;119(11):3257–3265.
  • Gorbatyuk OS, Li S, Sullivan LF, et al. The phosphorylation state of Ser-129 in human alpha-synuclein determines neurodegeneration in a rat model of Parkinson disease. Proc Natl Acad Sci U S A. 2008 Jan 15;105(2):763–768.
  • Paleologou KE, Schmid AW, Rospigliosi CC, et al. Phosphorylation at Ser-129 but not the phosphomimics S129E/D inhibits the fibrillation of alpha-synuclein. J Biol Chem. 2008 Jun 13;283(24):16895–16905.
  • Azeredo Da Silveira S, Schneider BL, Cifuentes-Diaz C, et al. Phosphorylation does not prompt, nor prevent, the formation of alpha-synuclein toxic species in a rat model of Parkinson’s disease. Hum Mol Genet. 2009 Mar 1;18(5):872–887.
  • McFarland NR, Fan Z, Xu K, et al. Alpha-synuclein S129 phosphorylation mutants do not alter nigrostriatal toxicity in a rat model of Parkinson disease. J Neuropathol Exp Neurol. 2009 May;68(5):515–24.
  • Lee KW, Chen W, Junn E, et al. Enhanced phosphatase activity attenuates alpha-synucleinopathy in a mouse model. J Neurosci. 2011 May 11;31(19):6963–71.
  • Oueslati A, Schneider BL, Aebischer P, et al. Polo-like kinase 2 regulates selective autophagic alpha-synuclein clearance and suppresses its toxicity in vivo. Proc Natl Acad Sci U S A 2013 Oct 8;110(41):E3945–54.
  • Reglodi D, Renaud J, Tamas A, et al. Novel tactics for neuroprotection in Parkinson's disease: Role of antibiotics, polyphenols and neuropeptides. Prog Neurobiol 2015 Nov 2; pii: S0301-0082(15)00128-8.
  • Li J, Zhu M, Rajamani S, et al. Rifampicin inhibits alpha-synuclein fibrillation and disaggregates fibrils. Chem Biol 2004 Nov;11(11):1513–21.
  • Xu J, Wei C, Xu C, et al. Rifampicin protects PC12 cells against MPP+-induced apoptosis and inhibits the expression of an alpha-Synuclein multimer. Brain Res 2007 Mar 30;1139:220–5.
  • Low PA, Robertson D, Gilman S, et al. Efficacy and safety of rifampicin for multiple system atrophy: a randomised, double-blind, placebo-controlled trial. Lancet Neurol 2014 Mar;13(3):268–75.
  • Ruzza P, Siligardi G, Hussain R, et al. Ceftriaxone blocks the polymerization of alpha-synuclein and exerts neuroprotective effects in vitro. ACS Chem Neurosci 2014 Jan 15;5(1):30–8.
  • Liu K, Shi N, Sun Y, et al. Therapeutic effects of rapamycin on MPTP-induced Parkinsonism in mice. Neurochem Res 2013 Jan;38(1):201–7.
  • Ehrnhoefer DE, Bieschke J, Boeddrich A, et al. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol 2008 Jun;15(6):558–66.
  • Bieschke J, Russ J, Friedrich RP, et al. EGCG remodels mature alpha-synuclein and amyloid-beta fibrils and reduces cellular toxicity. Proc Natl Acad Sci U S A 2010 Apr 27;107(17):7710–5.
  • Mandel S, Maor G, Youdim MB. Iron and alpha-synuclein in the substantia nigra of MPTP-treated mice: effect of neuroprotective drugs R-apomorphine and green tea polyphenol (-)-epigallocatechin-3-gallate. J Mol Neurosci 2004;24(3):401–16.
  • Chen M, Wang T, Yue F, et al. Tea polyphenols alleviate motor impairments, dopaminergic neuronal injury, and cerebral alpha-synuclein aggregation in MPTP-intoxicated parkinsonian monkeys. Neuroscience 2015 Feb 12;286:383–92.
  • Zhu M, Han S, Fink AL. Oxidized quercetin inhibits alpha-synuclein fibrillization. Biochim Biophys Acta 2013 Apr;1830(4):2872–81.
  • Zhu M, Rajamani S, Kaylor J, et al. The flavonoid baicalein inhibits fibrillation of alpha-synuclein and disaggregates existing fibrils. J Biol Chem 2004 Jun 25;279(26):26846–57.
  • Pandey N, Strider J, Nolan WC, et al. Curcumin inhibits aggregation of alpha-synuclein. Acta Neuropathol 2008 Apr;115(4):479–89.
  • Caruana M, Hogen T, Levin J, et al. Inhibition and disaggregation of alpha-synuclein oligomers by natural polyphenolic compounds. FEBS Lett 2011 Apr 20;585(8):1113–20.
  • El-Agnaf OM, Paleologou KE, Greer B, et al. A strategy for designing inhibitors of alpha-synuclein aggregation and toxicity as a novel treatment for Parkinson's disease and related disorders. FASEB J 2004 Aug;18(11):1315–7.
  • Madine J, Doig AJ, Middleton DA. Design of an N-methylated peptide inhibitor of alpha-synuclein aggregation guided by solid-state NMR. J Am Chem Soc 2008 Jun 25;130(25):7873–81.
  • Cheruvara H, Allen-Baume VL, Kad NM, et al. Intracellular screening of a peptide library to derive a potent peptide inhibitor of alpha-synuclein aggregation. J Biol Chem 2015 Mar 20;290(12):7426–35.
  • Daturpalli S, Waudby CA, Meehan S, et al. Hsp90 inhibits alpha-synuclein aggregation by interacting with soluble oligomers. J Mol Biol 2013 Nov 15;425(22):4614–28.
  • Majlath Z, Torok N, Toldi J, et al. Promising therapeutic agents for the treatment of Parkinson's disease. Expert Opin Biol Ther 2016 Jun;16(6):787–99.
  • Shimura H, Schlossmacher MG, Hattori N, et al. Ubiquitination of a new form of alpha-synuclein by parkin from human brain: implications for Parkinson's disease. Science 2001 Jul 13;293(5528):263–9.
  • Dorval V, Fraser PE. Small ubiquitin-like modifier (SUMO) modification of natively unfolded proteins tau and alpha-synuclein. J Biol Chem 2006 Apr 14;281(15):9919–24.
  • Giasson BI, Duda JE, Murray IV, et al. Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science 2000 Nov 3;290(5493):985–9.
  • Li W, West N, Colla E, et al. Aggregation promoting C-terminal truncation of alpha-synuclein is a normal cellular process and is enhanced by the familial Parkinson's disease-linked mutations. Proc Natl Acad Sci U S A 2005 Feb 8;102(6):2162–7.
  • Fujiwara H, Hasegawa M, Dohmae N, et al. alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 2002 Feb;4(2):160–4.
  • Nakajo S, Tsukada K, Omata K, et al. A new brain-specific 14-kDa protein is a phosphoprotein. Its complete amino acid sequence and evidence for phosphorylation. Eur J Biochem 1993 Nov 1;217(3):1057–63.
  • Okochi M, Walter J, Koyama A, et al. Constitutive phosphorylation of the Parkinson's disease associated alpha-synuclein. J Biol Chem 2000 Jan 7;275(1):390–7.
  • Anderson JP, Walker DE, Goldstein JM, et al. Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J Biol Chem 2006 Oct 6;281(40):29739–52.
  • Pronin AN, Morris AJ, Surguchov A, et al. Synucleins are a novel class of substrates for G protein-coupled receptor kinases. J Biol Chem 2000 Aug 25;275(34):26515–22.
  • Arawaka S, Wada M, Goto S, et al. The role of G-protein-coupled receptor kinase 5 in pathogenesis of sporadic Parkinson's disease. J Neurosci 2006 Sep 6;26(36):9227–38.
  • Kim EJ, Sung JY, Lee HJ, et al. Dyrk1A phosphorylates alpha-synuclein and enhances intracellular inclusion formation. J Biol Chem 2006 Nov 3;281(44):33250–7.
  • Inglis KJ, Chereau D, Brigham EF, et al. Polo-like kinase 2 (PLK2) phosphorylates alpha-synuclein at serine 129 in central nervous system. J Biol Chem 2009 Jan 30;284(5):2598–602.
  • Qing H, Wong W, McGeer EG, et al. Lrrk2 phosphorylates alpha synuclein at serine 129: Parkinson disease implications. Biochem Biophys Res Commun 2009 Sep 11;387(1):149–52.
  • Mbefo MK, Paleologou KE, Boucharaba A, et al. Phosphorylation of synucleins by members of the Polo-like kinase family. J Biol Chem 2010 Jan 22;285(4):2807–22.
  • Hebron ML, Lonskaya I, Moussa CE. Tyrosine kinase inhibition facilitates autophagic SNCA/alpha-synuclein clearance. Autophagy 2013 Aug;9(8):1249–50.
  • Wang Y, Liu J, Chen M, et al. The novel mechanism of rotenone-induced alpha-synuclein phosphorylation via reduced protein phosphatase 2A activity. Int J Biochem Cell Biol 2016 Jun;75:34–44.
  • Oueslati A, Fournier M, Lashuel HA. Role of post-translational modifications in modulating the structure, function and toxicity of alpha-synuclein: implications for Parkinson's disease pathogenesis and therapies. Prog Brain Res 2010;183:115–45.
  • Paleologou KE, Oueslati A, Shakked G, et al. Phosphorylation at S87 is enhanced in synucleinopathies, inhibits alpha-synuclein oligomerization, and influences synuclein-membrane interactions. J Neurosci 2010 Mar 3;30(9):3184–98.
  • Oueslati A, Paleologou KE, Schneider BL, et al. Mimicking phosphorylation at serine 87 inhibits the aggregation of human alpha-synuclein and protects against its toxicity in a rat model of Parkinson's disease. J Neurosci 2012 Feb 1;32(5):1536–44.
  • Feany MB, Bender WW. A Drosophila model of Parkinson's disease. Nature 2000 Mar 23;404(6776):394–8.
  • Chui DH, Tabira T, Izumi S, et al. Decreased beta-amyloid and increased abnormal Tau deposition in the brain of aged patients with leprosy. Am J Pathol 1994 Oct;145(4):771–5.
  • Tomiyama T, Asano S, Suwa Y, et al. Rifampicin prevents the aggregation and neurotoxicity of amyloid beta protein in vitro. Biochem Biophys Res Commun 1994 Oct 14;204(1):76–83.
  • Loeb MB, Molloy DW, Smieja M, et al. A randomized, controlled trial of doxycycline and rifampin for patients with Alzheimer's disease. J Am Geriatr Soc 2004 Mar;52(3):381–7.
  • Molloy DW, Standish TI, Zhou Q, et al. A multicenter, blinded, randomized, factorial controlled trial of doxycycline and rifampin for treatment of Alzheimer's disease: the DARAD trial. Int J Geriatr Psychiatry 2013 May;28(5):463–70.
  • Jensen PH, Hager H, Nielsen MS, et al. alpha-synuclein binds to Tau and stimulates the protein kinase A-catalyzed tau phosphorylation of serine residues 262 and 356. J Biol Chem 1999 Sep 3;274(36):25481–9.
  • Giasson BI, Forman MS, Higuchi M, et al. Initiation and synergistic fibrillization of tau and alpha-synuclein. Science 2003 Apr 25;300(5619):636–40.
  • Fernandez CO, Hoyer W, Zweckstetter M, et al. NMR of alpha-synuclein-polyamine complexes elucidates the mechanism and kinetics of induced aggregation. EMBO J 2004 May 19;23(10):2039–46.
  • McFarland MA, Ellis CE, Markey SP, et al. Proteomics analysis identifies phosphorylation-dependent alpha-synuclein protein interactions. Mol Cell Proteomics 2008 Nov;7(11):2123–37.
  • Yu S, Li X, Liu G, et al. Extensive nuclear localization of alpha-synuclein in normal rat brain neurons revealed by a novel monoclonal antibody. Neuroscience 2007 Mar 16;145(2):539–55.
  • Mak SK, McCormack AL, Manning-Bog AB, et al. Lysosomal degradation of alpha-synuclein in vivo. J Biol Chem 2010 Apr 30;285(18):13621–9.
  • Abeliovich A, Schmitz Y, Farinas I, et al. Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 2000 Jan;25(1):239–52.
  • Murphy DD, Rueter SM, Trojanowski JQ, et al. Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. J Neurosci 2000 May 1;20(9):3214–20.
  • Cabin DE, Shimazu K, Murphy D, et al. Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking alpha-synuclein. J Neurosci 2002 Oct 15;22(20):8797–807.
  • Chandra S, Gallardo G, Fernandez-Chacon R, et al. Alpha-synuclein cooperates with CSPalpha in preventing neurodegeneration. Cell 2005 Nov 4;123(3):383–96.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.