749
Views
37
CrossRef citations to date
0
Altmetric
Review

Investigational drugs targeting the prostaglandin E2 signaling pathway for the treatment of inflammatory pain

, &
Pages 51-61 | Received 28 Jul 2016, Accepted 10 Nov 2016, Published online: 20 Nov 2016

References

  • Melnikova I. Pain market. Nat Rev Drug Discov. 2010;9:589–590.
  • Gershell L, Goater JJ. Making gains in pain. Nat Rev Drug Discov. 2006;5:889–890.
  • Breivik H, Collett B, Ventafridda V, et al. Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur J Pain. 2006;10:287–333.
  • McGettigan P, Henry D. Cardiovascular risk with non-steroidal anti-inflammatory drugs: systematic review of population-based controlled observational studies. PLoS Med. 2011;8:e1001098.
  • Salvo F, Fourrier-Reglat A, Bazin F, et al. Cardiovascular and gastrointestinal safety of NSAIDs: a systematic review of meta-analyses of randomized clinical trials. Clin Pharmacol Ther. 2011;89:855–866.
  • Kuo HW, Tsai SS, Tiao MM, et al. Analgesic use and the risk for progression of chronic kidney disease. Pharmacoepidemiol Drug Saf. 2010;19:745–751.
  • Altman R, Bosch B, Brune K, et al. Advances in NSAID development: evolution of diclofenac products using pharmaceutical technology. Drugs. 2015;75:859–877.
  • Warner TD, Giuliano F, Vojnovic I, et al. Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: a full in vitro analysis. Proc Natl Acad Sci U S A. 1999;96:7563–7568.
  • Borhade N, Pathan AR, Halder S, et al. NO-NSAIDs. Part 3: nitric oxide-releasing prodrugs of non-steroidal anti-inflammatory drugs. Chem Pharm Bull (Tokyo). 2012;60:465–481.
  • Wallace JL, Wang R. Hydrogen sulfide-based therapeutics: exploiting a unique but ubiquitous gasotransmitter. Nat Rev Drug Discov. 2015;14:329–345.
  • Chattopadhyay M, Kodela R, Duvalsaint PL, et al. Gastrointestinal safety, chemotherapeutic potential, and classic pharmacological profile of NOSH-naproxen (AVT-219) a dual NO- and H2S-releasing hybrid. Pharmacol Res Perspect. 2016;4:e00224.
  • Kodela R, Chattopadhyay M, Velazquez-Martinez CA, et al. NOSH-aspirin (NBS-1120), a novel nitric oxide- and hydrogen sulfide-releasing hybrid has enhanced chemo-preventive properties compared to aspirin, is gastrointestinal safe with all the classic therapeutic indications. Biochem Pharmacol. 2015;98:564–572.
  • Kashfi K, Chattopadhyay M, Kodela R. NOSH-sulindac (AVT-18A) is a novel nitric oxide- and hydrogen sulfide-releasing hybrid that is gastrointestinal safe and has potent anti-inflammatory, analgesic, antipyretic, anti-platelet, and anti-cancer properties. Redox Biol. 2015;6:287–296.
  • Alvaro-Gracia JM. Licofelone–clinical update on a novel LOX/COX inhibitor for the treatment of osteoarthritis. Rheumatology (Oxford). 2004;43(Suppl 1):i21–5.
  • Ding C, Cicuttini F. Licofelone (Merckle). IDrugs. 2003;6:802–808.
  • Koeberle A, Werz O. Perspective of microsomal prostaglandin E2 synthase-1 as drug target in inflammation-related disorders. Biochem Pharmacol. 2015;98:1–15.
  • Arhancet GB, Walker DP, Metz S, et al. Discovery and SAR of PF-4693627, a potent, selective and orally bioavailable mPGES-1 inhibitor for the potential treatment of inflammation. Bioorg Med Chem Lett. 2013;23:1114–1119.
  • Clark P, Rowland SE, Denis D, et al. MF498 [N-{[4-(5,9-Diethoxy-6-oxo-6,8-dihydro-7H-pyrrolo[3,4-g]quinolin-7-yl)-3-methylbe nzyl]sulfonyl}-2-(2-methoxyphenyl)acetamide], a selective E prostanoid receptor 4 antagonist, relieves joint inflammation and pain in rodent models of rheumatoid and osteoarthritis. J Pharmacol Exp Ther. 2008;325:425–434.
  • Smith WL, Urade Y, Jakobsson PJ. Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis. Chem Rev. 2011;111:5821–5865.
  • Murakami M, Kudo I. Recent advances in molecular biology and physiology of the prostaglandin E2-biosynthetic pathway. Prog Lipid Res. 2004;43:3–35.
  • Zeilhofer HU. Prostanoids in nociception and pain. Biochem Pharmacol. 2007;73:165–174.
  • Burian M, Geisslinger G. COX-dependent mechanisms involved in the antinociceptive action of NSAIDs at central and peripheral sites. Pharmacol Ther. 2005;107:139–154.
  • Ji RR, Kohno T, Moore KA, et al. Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci. 2003;26:696–705.
  • Basbaum AI, Bautista DM, Scherrer G, et al. Cellular and molecular mechanisms of pain. Cell. 2009;139:267–284.
  • Mizumura K, Sugiura T, Katanosaka K, et al. Excitation and sensitization of nociceptors by bradykinin: what do we know? Exp Brain Res. 2009;196:53–65.
  • Kawabata A. Prostaglandin E2 and pain–an update. Biol Pharm Bull. 2011;34:1170–1173.
  • Kuner R. Central mechanisms of pathological pain. Nat Med. 2010;16:1258–1266.
  • Nishihara I, Minami T, Watanabe Y, et al. Prostaglandin E2 stimulates glutamate release from synaptosomes of rat spinal cord. Neurosci Lett. 1995;196:57–60.
  • Ferreira SH, Lorenzetti BB. Intrathecal administration of prostaglandin E2 causes sensitization of the primary afferent neuron via the spinal release of glutamate. Inflamm Res. 1996;45:499–502.
  • Myers LK, Kang AH, Postlethwaite AE, et al. The genetic ablation of cyclooxygenase 2 prevents the development of autoimmune arthritis. Arthritis Rheum. 2000;43:2687–2693.
  • Chen L, Yang G, Grosser T. Prostanoids and inflammatory pain. Prostaglandins Other Lipid Mediat. 2013;104-105:58–66.
  • Guhring H, Gorig M, Ates M, et al. Suppressed injury-induced rise in spinal prostaglandin E2 production and reduced early thermal hyperalgesia in iNOS-deficient mice. J Neurosci. 2000;20:6714–6720.
  • Scheuren N, Neupert W, Ionac M, et al. Peripheral noxious stimulation releases spinal PGE2 during the first phase in the formalin assay of the rat. Life Sci. 1997;60(PL):295–300.
  • Schuh CD, Brenneis C, Zhang DD, et al. Prostacyclin regulates spinal nociceptive processing through cyclic adenosine monophosphate-induced translocation of glutamate receptors. Anesthesiology. 2014;120:447–458.
  • Schuh CD, Pierre S, Weigert A, et al. Prostacyclin mediates neuropathic pain through interleukin 1beta-expressing resident macrophages. Pain. 2014;155:545–555.
  • Kanda H, Kobayashi K, Yamanaka H, et al. COX-1-dependent prostaglandin D2 in microglia contributes to neuropathic pain via DP2 receptor in spinal neurons. Glia. 2013;61:943–956.
  • Eguchi N, Minami T, Shirafuji N, et al. Lack of tactile pain (allodynia) in lipocalin-type prostaglandin D synthase-deficient mice. Proc Natl Acad Sci U S A. 1999;96:726–730.
  • Capone ML, Tacconelli S, Di Francesco L, et al. Pharmacodynamic of cyclooxygenase inhibitors in humans. Prostaglandins Other Lipid Mediat. 2007;82:85–94.
  • Patrignani P, Patrono C. Cyclooxygenase inhibitors: From pharmacology to clinical read-outs. Biochim Biophys Acta. 2015;1851:422–432.
  • Masso Gonzalez EL, Patrignani P, Tacconelli S, et al. Variability among nonsteroidal antiinflammatory drugs in risk of upper gastrointestinal bleeding. Arthritis Rheum. 2010;62:1592–1601.
  • Pirlamarla P, Bond RM. FDA labeling of NSAIDs: Review of nonsteroidal anti-inflammatory drugs in cardiovascular disease. Trends Cardiovasc Med. 2016;16:30028–7.
  • Bjarnason I, Hayllar J, MacPherson AJ, et al. Side effects of nonsteroidal anti-inflammatory drugs on the small and large intestine in humans. Gastroenterology. 1993;104:1832–1847.
  • Graham DY, Opekun AR, Willingham FF, et al. Visible small-intestinal mucosal injury in chronic NSAID users. Clin Gastroenterol Hepatol. 2005;3:55–59.
  • Wallace JL. Mechanisms, prevention and clinical implications of nonsteroidal anti-inflammatory drug-enteropathy. World J Gastroenterol. 2013;19:1861–1876.
  • Bibbins-Domingo K, Force USPST. Aspirin Use for the Primary Prevention of Cardiovascular Disease and Colorectal Cancer: U.S. Preventive Services Task Force Recommendation Statement. Ann Intern Med. 2016;164:836–845.
  • Wallace JL, McKnight W, Reuter BK, et al. NSAID-induced gastric damage in rats: requirement for inhibition of both cyclooxygenase 1 and 2. Gastroenterology. 2000;119:706–714.
  • Tanaka A, Araki H, Komoike Y, et al. Inhibition of both COX-1 and COX-2 is required for development of gastric damage in response to nonsteroidal antiinflammatory drugs. J Physiol Paris. 2001;95:21–27.
  • Niederberger E, Tegeder I, Vetter G, et al. Celecoxib loses its anti-inflammatory efficacy at high doses through activation of NF-kappaB. Faseb J. 2001;15:1622–1624.
  • Niederberger E, Tegeder I, Schafer C, et al. Opposite Effects of Rofecoxib on Nuclear Factor-kappaB and Activating Protein-1 Activation. J Pharmacol Exp Ther. 2003;304:1153–1160.
  • Niederberger E, Manderscheid C, Geisslinger G. Different COX-independent effects of the COX-2 inhibitors etoricoxib and lumiracoxib. Biochem Biophys Res Commun. 2006;342:940–948.
  • Grosch S, Tegeder I, Niederberger E, et al. COX-2 independent induction of cell cycle arrest and apoptosis in colon cancer cells by the selective COX-2 inhibitor celecoxib. Faseb J. 2001;15:2742–2744.
  • Grosch S, Maier TJ, Schiffmann S, et al. Cyclooxygenase-2 (COX-2)-independent anticarcinogenic effects of selective COX-2 inhibitors. J Natl Cancer Inst. 2006;98:736–747.
  • Chen YF, Jobanputra P, Barton P, et al. Cyclooxygenase-2 selective non-steroidal anti-inflammatory drugs (etodolac, meloxicam, celecoxib, rofecoxib, etoricoxib, valdecoxib and lumiracoxib) for osteoarthritis and rheumatoid arthritis: a systematic review and economic evaluation. Health Technol Assess. 2008;12:1–278, iii.
  • Bhala N, Emberson J, Merhi A, et al.; Collaboration, C.a.t.N.T. Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials. Lancet. 2013;382:769–779.
  • Lanas A, Baron JA, Sandler RS, et al. Peptic ulcer and bleeding events associated with rofecoxib in a 3-year colorectal adenoma chemoprevention trial. Gastroenterology. 2007;132:490–497.
  • Bombardier C, Laine L, Reicin A, et al. Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. VIGOR Study Group. N Engl J Med. 2000;343:1520–1528.
  • Singh G, Fort JG, Goldstein JL, et al. Celecoxib versus naproxen and diclofenac in osteoarthritis patients: SUCCESS-I Study. Am J Med. 2006;119:255–266.
  • Silverstein FE, Faich G, Goldstein JL, et al. Gastrointestinal toxicity with celecoxib vs nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis: the CLASS study: a randomized controlled trial. Celecoxib Long-term Arthritis Safety Study. Jama. 2000;284:1247–1255.
  • Peskar BM. Role of cyclooxygenase isoforms in gastric mucosal defense and ulcer healing. Inflammopharmacology. 2005;13:15–26.
  • Takeuchi K. Pathogenesis of NSAID-induced gastric damage: importance of cyclooxygenase inhibition and gastric hypermotility. World J Gastroenterol. 2012;18:2147–2160.
  • Yuan JQ, Tsoi KK, Yang M, et al. Systematic review with network meta-analysis: comparative effectiveness and safety of strategies for preventing NSAID-associated gastrointestinal toxicity. Aliment Pharmacol Ther. 2016;43:1262–1275.
  • Fujimori S. What are the effects of proton pump inhibitors on the small intestine? World J Gastroenterol. 2015;21:6817–6819.
  • Washio E, Esaki M, Maehata Y, et al. Proton pump inhibitors increase incidence of nonsteroidal anti-inflammatory drug-induced small bowel injury: a randomized, placebo-controlled trial. Clin Gastroenterol Hepatol. 2016;14:809–15 e1.
  • Bresalier RS, Sandler RS, Quan H, et al. Cardiovascular events associated with rofecoxib in a colorectal adenoma chemoprevention trial. N Engl J Med. 2005;352:1092–1102.
  • Olsen AM, Fosbol EL, Lindhardsen J, et al. Long-term cardiovascular risk of nonsteroidal anti-inflammatory drug use according to time passed after first-time myocardial infarction: a nationwide cohort study. Circulation. 2012;126:1955–1963.
  • White WB. Cardiovascular effects of the cyclooxygenase inhibitors. Hypertension. 2007;49:408–418.
  • Oitate M, Hirota T, Koyama K, et al. Covalent binding of radioactivity from [14C]rofecoxib, but not [14C]celecoxib or [14C]CS-706, to the arterial elastin of rats. Drug Metab Dispos. 2006;34:1417–1422.
  • Fok KC, Bell CJ, Read RB, et al. Lumiracoxib-induced cholestatic liver injury. Intern Med J. 2013;43:731–732.
  • Atukorala I, Hunter DJ. Valdecoxib: the rise and fall of a COX-2 inhibitor. Expert Opin Pharmacother. 2013;14:1077–1086.
  • Layton D, Marshall V, Boshier A, et al. Serious skin reactions and selective COX-2 inhibitors: a case series from prescription-event monitoring in England. Drug Saf. 2006;29:687–696.
  • Argoff C, McCarberg B, Gudin J, et al. SoluMatrix ® diclofenac: sustained opioid-sparing effects in a phase 3 study in patients with postoperative pain. Pain Med. 2016;17:1933–1941.
  • Burnett BP, Levy RM. 5-Lipoxygenase metabolic contributions to NSAID-induced organ toxicity. Adv Ther. 2012;29:79–98.
  • Noguchi K, Okubo M. Leukotrienes in nociceptive pathway and neuropathic/inflammatory pain. Biol Pharm Bull. 2011;34:1163–1169.
  • Wallace JL. Nitric oxide, aspirin-triggered lipoxins and NO-aspirin in gastric protection. Inflamm Allergy Drug Targets. 2006;5:133–137.
  • Gewirtz A. Lipoxin analogs: novel anti-inflammatory mediators. Curr Opin Investig Drugs. 2005;6:1112–1115.
  • Lehmann C, Homann J, Ball AK, et al. Lipoxin and resolvin biosynthesis is dependent on 5-lipoxygenase activating protein. Faseb J. 2015;29:5029–5043.
  • Ruiz J, Perez C, Pouplana R. QSAR study of dual cyclooxygenase and 5-lipoxygenase inhibitors 2,6-di-tert-butylphenol derivatives. Bioorg Med Chem. 2003;11:4207–4216.
  • Pillai AD, Rathod PD, Xavier FP, et al. Tetra substituted thiophenes as anti-inflammatory agents: exploitation of analogue-based drug design. Bioorg Med Chem. 2005;13:6685–6692.
  • Sharma RN, Xavier FP, Vasu KK, et al. Synthesis of 4-benzyl-1,3-thiazole derivatives as potential anti-inflammatory agents: an analogue-based drug design approach. J Enzyme Inhib Med Chem. 2009;24:890–897.
  • Kulkarni SK, Singh VP. Licofelone: the answer to unmet needs in osteoarthritis therapy? Curr Rheumatol Rep. 2008;10:43–48.
  • Wildi LM, Raynauld JP, Martel-Pelletier J, et al. Relationship between bone marrow lesions, cartilage loss and pain in knee osteoarthritis: results from a randomised controlled clinical trial using MRI. Ann Rheum Dis. 2010;69:2118–2124.
  • Pelletier JP, Raynauld JP, Caron J, et al. Decrease in serum level of matrix metalloproteinases is predictive of the disease-modifying effect of osteoarthritis drugs assessed by quantitative MRI in patients with knee osteoarthritis. Ann Rheum Dis. 2010;69:2095–2101.
  • Bitto A, Squadrito F, Irrera N, et al. Flavocoxid, a nutraceutical approach to blunt inflammatory conditions. Mediators Inflamm. 2014;(2014):790851.
  • Levy R, Khokhlov A, Kopenkin S, et al. Efficacy and safety of flavocoxid compared with naproxen in subjects with osteoarthritis of the knee- a subset analysis. Adv Ther. 2010;27:953–962.
  • Chalasani N, Vuppalanchi R, Navarro V, et al. Acute liver injury due to flavocoxid (Limbrel), a medical food for osteoarthritis: a case series. Ann Intern Med. 2012;156(857–60):W297–300.
  • Davies NM, Roseth AG, Appleyard CB, et al. NO-naproxen vs. naproxen: ulcerogenic, analgesic and anti-inflammatory effects. Aliment Pharmacol Ther. 1997;11:69–79.
  • Fiorucci S, Del Soldato P. NO-aspirin: mechanism of action and gastrointestinal safety. Dig Liver Dis. 2003;35(Suppl 2):S9–19.
  • Fiorucci S, Distrutti E, Cirino G, et al. The emerging roles of hydrogen sulfide in the gastrointestinal tract and liver. Gastroenterology. 2006;131:259–271.
  • Van Goor H, Van Den Born JC, Hillebrands JL, et al. Hydrogen sulfide in hypertension. Curr Opin Nephrol Hypertens. 2016;25:107–113.
  • Schnitzer TJ, Hochberg MC, Marrero CE, et al. Efficacy and safety of naproxcinod in patients with osteoarthritis of the knee: a 53-week prospective randomized multicenter study. Semin Arthritis Rheum. 2011;40:285–297.
  • Miglietta D, De Palma C, Sciorati C, et al. Naproxcinod shows significant advantages over naproxen in the mdx model of duchenne muscular dystrophy. Orphanet J Rare Dis. 2015;10:101.
  • Wallace JL, Blackler RW, Chan MV, et al. Anti-inflammatory and cytoprotective actions of hydrogen sulfide: translation to therapeutics. Antioxid Redox Signal. 2015;22:398–410.
  • Wallace JL, Caliendo G, Santagada V, et al. Markedly reduced toxicity of a hydrogen sulphide-releasing derivative of naproxen (ATB-346). Br J Pharmacol. 2010;159:1236–1246.
  • Blackler R, Syer S, Bolla M, et al. Gastrointestinal-sparing effects of novel NSAIDs in rats with compromised mucosal defence. PLoS One. 2012;7:e35196.
  • Distrutti E, Sediari L, Mencarelli A, et al. Evidence that hydrogen sulfide exerts antinociceptive effects in the gastrointestinal tract by activating KATP channels. J Pharmacol Exp Ther. 2006;316:325–335.
  • Wallace JL. Hydrogen sulfide-releasing anti-inflammatory drugs. Trends Pharmacol Sci. 2007;28:501–505.
  • Cacciatore I, Marinelli L, Fornasari E, et al. Novel NSAID-Derived Drugs for the Potential Treatment of Alzheimer’s Disease. Int J Mol Sci. 2016;17:1035.
  • Lichtenberger LM, Barron M, Marathi U. Association of phosphatidylcholine and NSAIDs as a novel strategy to reduce gastrointestinal toxicity. Drugs Today (Barc). 2009;45:877–890.
  • Wong CC, Cheng KW, Papayannis I, et al. Phospho-NSAIDs have enhanced efficacy in mice lacking plasma carboxylesterase: implications for their clinical pharmacology. Pharm Res. 2015;32:1663–1675.
  • Consalvi S, Biava M, Poce G. COX inhibitors: a patent review (2011-2014). Expert Opin Ther Pat. 2015;25:1357–1371.
  • Samuelsson B, Morgenstern R, Jakobsson PJ. Membrane prostaglandin E synthase-1: a novel therapeutic target. Pharmacol Rev. 2007;59:207–224.
  • Hanke T, Rorsch F, Thieme TM, et al. Synthesis and pharmacological characterization of benzenesulfonamides as dual species inhibitors of human and murine mPGES-1. Bioorg Med Chem. 2013;21:7874–7883.
  • Rorsch F, Buscato E, Deckmann K, et al. Structure-activity relationship of nonacidic quinazolinone inhibitors of human microsomal prostaglandin synthase 1 (mPGES 1). J Med Chem. 2012;55:3792–3803.
  • Rorsch F, Wobst I, Zettl H, et al. Nonacidic inhibitors of human microsomal prostaglandin synthase 1 (mPGES 1) identified by a multistep virtual screening protocol. J Med Chem. 2010;53:911–915.
  • Xu D, Rowland SE, Clark P, et al. MF63 [2-(6-chloro-1H-phenanthro[9,10-d]imidazol-2-yl)-isophthalonitrile], a selective microsomal prostaglandin E synthase-1 inhibitor, relieves pyresis and pain in preclinical models of inflammation. J Pharmacol Exp Ther. 2008;326:754–763.
  • Brenneis C, Coste O, Schmidt R, et al. Consequences of altered eicosanoid patterns for nociceptive processing in mPGES-1-deficient mice. J Cell Mol Med. 2008;12:639–648.
  • Luz JG, Antonysamy S, Kuklish SL, et al. Crystal structures of mPGES-1 inhibitor complexes form a basis for the rational design of potent analgesic and anti-inflammatory therapeutics. J Med Chem. 2015;58:4727–4737.
  • Gupta A, Aparoy P. Insights into the structure activity relationship of mPGES-1 inhibitors: hints for better inhibitor design. Int J Biol Macromol. 2016;88:624–632.
  • Jin Y, Smith CL, Hu L, et al. Pharmacodynamic comparison of LY3023703, a novel microsomal prostaglandin e synthase 1 inhibitor, with celecoxib. Clin Pharmacol Ther. 2016;99:274–284.
  • St-Jacques B, Ma W. Peripheral prostaglandin E2 prolongs the sensitization of nociceptive dorsal root ganglion neurons possibly by facilitating the synthesis and anterograde axonal trafficking of EP4 receptors. Exp Neurol. 2014;261:354–366.
  • Kawahara K, Hohjoh H, Inazumi T, et al. Prostaglandin E2-induced inflammation: relevance of prostaglandin E receptors. Biochim Biophys Acta. 2015;1851:414–421.
  • Schiffmann S, Weigert A, Mannich J, et al. PGE2/EP4 signaling in peripheral immune cells promotes development of experimental autoimmune encephalomyelitis. Biochem Pharmacol. 2014;87:625–635.
  • Lin CR, Amaya F, Barrett L, et al. Prostaglandin E2 receptor EP4 contributes to inflammatory pain hypersensitivity. J Pharmacol Exp Ther. 2006;319:1096–1103.
  • Flesch D, Merk D, Lamers C, et al. Novel prostaglandin receptor modulators–part II: EP receptor modulators; a patent review (2002-2012). Expert Opin Ther Pat. 2013;23:233–267.
  • Rausch-Derra L, Huebner M, Wofford J, et al. A prospective, randomized, masked, placebo-controlled multisite clinical study of grapiprant, an EP4 Prostaglandin Receptor Antagonist (PRA), in dogs with osteoarthritis. J Vet Intern Med. 2016;30:756–763.
  • Blanco MJ, Vetman T, Chandrasekhar S, et al. Discovery of potent aryl-substituted 3-[(3-methylpyridine-2-carbonyl) amino]-2,4-dimethyl-benzoic acid EP4 antagonists with improved pharmacokinetic profile. Bioorg Med Chem Lett. 2016;26:931–935.
  • Colucci J, Boyd M, Berthelette C, et al. Discovery of 4-[1-[([1-[4-(trifluoromethyl)benzyl]-1H-indol-7-yl]carbonyl)amino]cyclopropyl]be nzoic acid (MF-766), a highly potent and selective EP4 antagonist for treating inflammatory pain. Bioorg Med Chem Lett. 2010;20:3760–3763.
  • Bradley JD, Dmitrienko AA, Kivitz AJ, et al. A randomized, double-blinded, placebo-controlled clinical trial of LY333013, a selective inhibitor of group II secretory phospholipase A2, in the treatment of rheumatoid arthritis. J Rheumatol. 2005;32:417–423.
  • Magrioti V, Kokotos G. Phospholipase A2 inhibitors for the treatment of inflammatory diseases: a patent review (2010–present). Expert Opin Ther Pat. 2013;23:333–344.
  • Hanke T, Merk D, Steinhilber D, et al. Small molecules with anti-inflammatory properties in clinical development. Pharmacol Ther. 2016;157:163–187.
  • Rao P, Knaus EE. Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): cyclooxygenase (COX) inhibition and beyond. J Pharm Pharm Sci. 2008;11:81s–110s.
  • Patrono C, Rocca B. Nonsteroidal antiinflammatory drugs: past, present and future. Pharmacol Res. 2009;59:285–289.
  • Lotsch J, Geisslinger G. Low-dose drug combinations along molecular pathways could maximize therapeutic effectiveness while minimizing collateral adverse effects. Drug Discov Today. 2011;16:1001–1006.
  • Ramachandran SD, Schirmer K, Munst B, et al. In Vitro generation of functional liver organoid-like structures using adult human cells. PLoS One. 2015;10:e0139345.
  • Groeber F, Engelhardt L, Lange J, et al. A first vascularized skin equivalent for as an alternative to animal experimentation. Altex. 2016;22:4:415–422.
  • Marx U, Walles H, Hoffmann S, et al. ‘Human-on-a-chip’ developments: a translational cutting-edge alternative to systemic safety assessment and efficiency evaluation of substances in laboratory animals and man? Altern Lab Anim. 2012;40:235–257.
  • Maubach KA, Davis RJ, Clark DE, et al. BGC20-1531, a novel, potent and selective prostanoid EP receptor antagonist: a putative new treatment for migraine headache. Br J Pharmacol. 2009;156:316–327.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.