2,319
Views
19
CrossRef citations to date
0
Altmetric
Review

Currently used and investigational drugs for Cushing´s disease

ORCID Icon, , ORCID Icon &
Pages 75-84 | Received 24 Feb 2016, Accepted 25 Nov 2016, Published online: 08 Dec 2016

References

  • Bertagna X, Guignat L, Groussin L, et al. Cushing’s disease. Best Pract Res Clin Endocrinol Metab. 2009;23(5):607–623.
  • Biller BMK, Grossman AB, Stewart PM, et al. Treatment of adrenocorticotropin-dependent Cushing’s syndrome: a consensus statement. J Clin Endocrinol Metab. 2008;93(7):2454–2462.
  • Pivonello R, De Leo M, Cozzolino A, et al. The treatment of Cushing’s disease. Endocr Rev. 2015;36(Aug):385–486.
  • Tritos NA, Biller BM, Swearingen B. Management of Cushing disease. Nat Rev Endocrinol. 2011;7:279–289.
  • Rutkowski MJ, Flanigan PM, Aghi MK. Update on the management of recurrent Cushing’s disease. Neurosurg Focus. 2015;38(Feb):E16–19.
  • Liu JK, Fleseriu M, Delashaw JB, et al. Treatment options for Cushing disease after unsuccessful transsphenoidal surgery. Neurosurg Focus. 2007;23(3):E8.
  • Hamrahian A, Yuen K, Hoffman A. AAACE/ACE disease state clinical review: medical management of Cushing disease. Endocr Pract. 2014;20(7):746–757.
  • Assié G, Bahurel H, Coste J, et al. Corticotroph tumor progression after adrenalectomy in Cushing’s disease: a reappraisal of Nelson’s syndrome. J Clin Endocrinol Metab. 2007;92(1):172–179.
  • Pecori Giraldi F, Ambrogio AG, Andrioli M, et al. Potential role for retinoic acid in patients with Cushing’s disease. J Clin Endocrinol Metab. 2012;97(10):3577–3583.
  • Vilar L, Albuquerque JL, Lyra R, et al. The role of isotretinoin therapy for Cushing’s disease: results of a prospective study. Int J Endocrinol. 2016; 2016:8173182.
  • GlobalData.com [Internet]. Cortendo’s Normocort: a Cushing’s syndrome newcomer entersphase III. [cited 2014 Aug 18]. Available from: https://healthcare.globaldata.com/resources/expert-insights/pharmaceuticals/cortendos-normocort-a-cushings-syndrome-newcomer-enters-phase-iii.html
  • Cortendo AB First patient enrolled into NormoCort phase 3 SONICS trial. Following a successful EU investigator meeting. [cited 2014 Aug 12]. Available from: http://otc.nfmf.no/public/news/14650.pdf
  • MarketResearch.com [Internet]. Cushing’s Syndrome-opportunity analysis and forecast to 2018. GlobalData. [cited 2015 Dec 12]. Available from: http://www.marketresearch.com/product/sample-8941833.pdf
  • Morris D, Grossman A. The medical management of Cushing’s syndrome. Ann N Y Acad Sci. 2002;970(1):119–133.
  • Bertagna X, Pivonello R, Fleseriu M, et al. LCI699, a Potent 11β-hydroxylase Inhibitor, normalizes urinary cortisol in patients with Cushing’s disease: results from a multicenter, proof-of-concept study. J Clin Endocrinol Metab. 2014;99(4):1375–1383.
  • Fleseriu M, Petersenn S. New avenues in the medical treatment of Cushing’s disease: corticotroph tumor targeted therapy. J Neurooncol. 2013;114(1):1–11.
  • ClinicalTrials.gov [Internet]. Safety and efficacy of LCI699 for the treatment of patients withCushing’s disease. [cited 2015 Nov 26]. Available from https://clinicaltrials.gov/ct2/show/NCT02180217
  • Feelders RA, Hofland LJ. Medical treatment of Cushing’s disease. J Clin Endocrinol Metab. 2013;98(2):425–438.
  • Fleseriu M, Biller BM, Findling JW, et al. Mifepristone, a glucocorticoid receptor antagonist produces clinical and metabolic benefits in patients with Cushing’s Syndrome. J Clin Endocrinol Metab. 2012;97(6):2039–2049.
  • Boscaro M, Ludlam WH, Atkinson B, et al. Treatment of pituitary-dependent Cushing’s disease with the multireceptor ligand somatostatin analog pasireotide (SOM230): a multicenter, phase II trial. J Clin Endocrinol Metab. 2009;94(1):115–122.
  • Castillo V, Theodoropoulou M, Stalla G, et al. Effect of SOM230 (Pasireotide) on corticotropic cells: action in dogs with Cushing’s disease.Neuroendocrinology. 2011;94(2):124–136.
  • Lamberts SW, Uitterlinden P, Klijn JM. The effect of the long-acting somatostatin analogue SMS 201-995 on ACTH secretion in Nelson’s syndrome and Cushing’s disease. Acta Endocrinol (Copenh). 1989;120(6):760–766.
  • Stalla GK, Brockmeier SJ, Renner U, et al. Octreotide exerts different effects in vivo and in vitro in Cushing’s disease. Eur J of Endocrinol. 1994;130(2):125–131.
  • Lamberts S, McLoad R. Regulation of prolactin secretion at the level of the lactotroph. Physiol Rev. 1990;70:279–318.
  • Igaz P, Tombol Z, Szabo PM, et al. Steroid biosynthesis inhibitors in the therapy of hypercortisolism: theory and practice. Curr Med Chem. 2008;15(26):2734–2747.
  • Komanicky P, Sprak R, Melby JC. Treatment of Cushing´s syndrome with Trilostane (WIN 24,540), an inhibitor of adrenal steroid biosynthesis. J Clin Endocrinol Metab. 1978;47(5):1042–1051.
  • Dewis P, Anderson DC, Bu’lock DE, et al. Experience with Trilostane in the treatment of Cushing’s syndrome. Clin Endocrinol (Oxf). 1983;18(6):533–540.
  • Heyn J, Geiger C, Hinske CL, et al. Medical suppression of hypercortisolemia in Cushing’s syndrome with particular consideration of etomidate. Pituitary. 2012;15(2):117–125.
  • Tritos N, Biller BM. Medical management of Cushing’s disease. J Neurooncol. 2013;117(3):407–414.
  • Greening JE, Brain CE, Perry LA, et al. Efficient short-term control of hypercortisolaemia by low-dose etomidate in severe paediatric Cushing’s disease. Horm Res. 2005;64(3):140–143.
  • Fleseriu M, Petersenn S. Medical management of Cushing’s disease: what is the future? Pituitary. 2012;15(3):330–341.
  • Feelders RA, Hofland LJ, de Herder WW. Medical treatment of Cushing’s syndrome: adrenal-blocking drugs and ketaconazole. Neuroendocrinology. 2010;92(1):111–115.
  • Eckstein N, Haas B, Hass MD, et al. Systemic therapy of Cushing’s syndrome. Orphanet J Rare Dis. 2014;9:122.
  • Bouw E, Huisman M, Neggers SJ, et al. Development of potent selective competitive-antagonists of the melanocortin type 2 receptor. Mol Cell Endocrinol. 2014;394(1–2):99–104.
  • Pont A, Williams PL, Azhar S, et al. Ketoconazole blocks testosterone synthesis. Arch Intern Med. 1982;142(12):2137–2140.
  • Stalla GK, Stalla J, Huber M, et al. Ketoconazole inhibits corticotropic cell function in vitro. Endocrinology. 1988;122(2):618–623.
  • Castinetti F, Morange I, Jaquet P, et al. Ketoconazole revisited: a preoperative or postoperative treatment in Cushing’s disease. Eur J Endocrinol. 2008;158(1):91–99.
  • Guelho D, Grossman AB. Emerging drugs for Cushing’s disease. Expert Opin Emerg Drugs. 2015;20(3):463–478.
  • Ogawa R, Echizen H. Drug-drug interaction profiles of proton pump inhibitors. Clin Pharmacokinet. 2010;49(8):509–533.
  • Daniel E, Aylwin S, Mustafa O, et al. Effectiveness of metyrapone in treating Cushing’s syndrome: a retrospective multicenter study in 195 patients. J Clin Endocrinol Metab. 2015;100(11):4146–4154.
  • Schteingart DE. Drugs in the medical treatment of Cushing’s syndrome. Expert Opin Emerg Drugs. 2009;14(4):661–671.
  • Vierhapper H, Nowotny P, Waldhäusl W. Effect of trilostan on steroid excretion in man: compensated inhibition of 3 beta-hydroxysteroid dehydrogenase. J Steroid Biochem. 1986;24(2):577–580.
  • Langlois DK, Fritz MC, Bailie MB. et al. ATR-101, a Selective ACAT1 Inhibitor, Decreases ACTH-Stimulated Cortisol Levels in Naturally-Occurring Cushing's Syndrome in Dogs. Presented at: Endocrine Society annual meeting; 2015 May 5-8; San Diego, CA.
  • ClinicalTrials.gov [Internet]. Phase 1 study of ATR - 101 in subjects with advanced adrenocortical carcinoma. [cited 2015 May]. Available from: https://clinicaltrials.gov/ct2/show/study/NCT01898715?term=atr+101&rank=1&view=record
  • Newfield RS. ACTH receptor blockade: a novel approach to treat congenital adrenal hyperplasia, or Cushing’s disease. Med Hypotheses. 2010;74(4):705–706.
  • Seelig S, Sayers G, Schwyzer R, et al. Isolated adrenal cells: ACTH (11– 24), a competitive antagonist of ACTH(1–39) and ACTH(1–10). FEBS Lett. 1971;19(3):232–234.
  • Kapas S, Cammas FM, Hinson JP, et al. Agonist and receptor binding properties of adrenocorticotropin peptides using the cloned mouse adrenocorticotropin receptor expressed in a stably transfected HeLa cell line. Endocrinology. 1996;137(8):3291–3294.
  • Szalay KS, De Wied D, Stark E. Effects of ACTH-(11–24) on the corticosteroid production of isolated adrenocortical cells. J Steroid Biochem. 1989;32(2):259–262.
  • Hofmann K, Montibeller JA, Finn FM. ACTH antagonists. Proc Natl Acad Sci USA. 1974;71(1):80–83.
  • Nensey NK, Bodager J, Gehrand AL, et al. Effect of novel melanocortin type 2 receptor antagonists on the corticosterone response to ACTH in the neonatal rat adrenal gland in vivo and in vitro. Front Endocrinol (Lausanne). 2016;7:23.
  • Hofland LJ, van der Hoek J, Feelders R, et al. The multi-ligand somatostatin analogue SOM230 inhibits ACTH secretion by cultured human corticotroph adenomas via somatostatin receptor type 5. Eur J Endocrinol. 2005;152:645–654.
  • Schmid HA, Schoeffter P. Functional activity of the multiligand analog SOM230 at human recombinant somatostatin receptor subtypes supports its usefulness in neuroendocrine tumors. Neuroendocrinology. 2004;80(Suppl. 1):47–50.
  • Colao A, Petersenn S, Newell-Price J, et al. A 12-month phase 3 study of pasireotide in Cushing’s disease. N Engl J Med. 2012;366(10):914–924.
  • Ligueros-Saylan M, Zhang Y, Newell-Price J, et al. Evaluation of the efficacy and safety of pasireotide LAR in patients with mild-to- 805 moderate cushing’ s disease: a randomized, double-blind, multicenter, phase III study design [abstract]. Endocrine Abstracts. 2012;29 (P1542.1).
  • Plöckinger U, Hoffmann U, Geese M, et al. DG3173 (somatoprim), a unique somatostatin receptor subtypes 2-, 4- and 5-selective analogue, effectively reduces GH secretion in human GH-secreting pituitary adenomas even in Octreotide non-responsive tumors. Eur J Endocrinol. 2012;166:223–234.
  • Pivonello R, Ferone D, de Herder WW, et al. Dopamine receptor expression and function in corticotroph pituitary tumors. J Clin Endocrinol Metab. 2004;89(5):2452–2462.
  • Castillo V, Gomez N, Cabrera M, et al. Cushing’s disease in dogs: cabergoline treatment. Res Vet Sci. 2008;85:26–34.
  • Rocheville M, Lange DC, Kumar U, et al. Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science. 2000;288(5463):154–157.
  • De Bruin C, Feelders R, Lamberts SWJ, et al. Somatostatin and dopamine receptors as targets for medical treatment of Cushing’s Syndrome. Rev Endocr Metab Disord. 2009;10(2):91–102.
  • Culler MD. Somatostatin-dopamine chimeras: a novel approach to treatment of neuroendocrine tumors. Horm Metab Res. 2011;43(12):854–857.
  • Van der Pas R, de Herder W, Hofland LJ, et al. New developments in the medical treatment of Cushing’s syndrome. Endocr Relat Cancer. 2012;19(6):R205–223.
  • Feelders RA, de Bruin C, Pereira AM, et al. Pasireotide alone or with cabergoline and ketoconazole in Cushing’s disease. N Engl J Med. 2010;362(19):1846–1848.
  • Heaney AP, Fernando M, Yong WH, et al. PPAR-gamma receptor is a novel therapeutic target for ACTH-secreting pituitary adenomas. Nat Med. 2002;8:1281–1287.
  • Gruszka A, Kunert-Radek J, Rosiglitazone PM. PPAR-gamma receptor ligand, decreases the viability of rat prolactin-secreting pituitary tumor cells in vitro. Neuro Endocrinol Lett. 2005;26(1):51–54.
  • Bogazzi F, Ultimieri F, Raggi F, et al. PPAR-gamma inhibits GH synthesis and secretion and increases apoptosis of pituitary GH-secreting adenomas. Eur J Endocrinol. 2004;150(6):863–875.
  • Pecori Giraldi F, Scaroni C, Arvat E, et al. Effect of protracted treatment with rosiglitazone, a PPAR-γ agonist, in patients with Cushing’s disease. Clin Endocrinol. 2006;64(2):219–224.
  • Stone JC, Furuya-Kanamori L, Barendregt JJ, et al. Was there really any evidence that rosiglitazone increased the risk of myocardial infarction or death from cardiovascular causes? Pharmacoepidemiol Drug Saf. 2015;24(3):223–227.
  • Páez-Pereda M, Kovalovsky D, Hopfner U, et al. Retinoic acid prevents experimental Cushing syndrome. J Clin Invest. 2001;108(8):1123–1131.
  • Castillo V, Giacomini D, Páez-Pereda M, et al. Retinoic acid as a novel medical therapy for Cushing’s disease in dogs. Endocrinology. 2006;147(9):4438–4444.
  • Levin AA. Receptors as tools for understanding the toxicity of retinoids. Toxicol Lett. 1995;82–83:91–97.
  • Kim YW, Sharma RP, Li JK. Characterization of heterologously expressed recombinant retinoic acid receptors with natural or synthetic retinoids. J Biochem Toxicol. 1994;9(5):225–234.
  • Occhi G, Regazzo D, Albiger NM, et al. Activation of the Dopamine Receptor Type 2 (DRD2) promoter by 9-cis retinoic acid in a cellular model of Cushing ’s disease mediates the inhibition of cell corticotroph-to-melanotroph transdifferentiation. Endocrinology. 2014;155(9):3538–3549.
  • Atmaca H, Gülsen I, Nilgün S, et al. Can bexarotene be a candidate drug for the medical therapy of Cushing’s syndrome? Endocrine Abstracts. 2014;35:P211.
  • Farol LT, Hymes KB. Bexarotene: a clinical review. Expert Rev Anticancer Ther. 2004;4(2):180–188.
  • Reincke M, Sbiera S, Hayakawa A, et al. Mutations in the deubiquitinase gene USP8 cause Cushing’s disease. Nat Genetics. 2015;47(1):31–38.
  • Fukuoka H, Cooper O, Ben-Shlomo A, et al. EGFR as a therapeutic target for human, canine, and mouse ACTH-secreting pituitary adenomas. J Clin Invest. 2011;121(12):4712–4721.
  • Lau D, Rutledge C, Aghi MK. Cushing s disease: current therapies and molecular insights guiding future therapies. Neurosurg Focus. 2015;38(2):E11.
  • Liu NA, Jiang H, Ben-Shlomo A, et al. Targeting zebrafish and murine pituitary corticotroph tumors with a cyclin-dependent kinase (CDK) inhibitor. Proc Natl Acad Sci USA. 2011;108(20):8414–8419.
  • Liu NA, Araki T, Cuevas-Ramos D, et al. Cyclin E-mediated human proopiomelanocortin regulation as a therapeutic target for Cushing disease. J Clin Endocrinol Metab. 2015;100(7):2557–2564.
  • Benson C, White J, De Bono J, et al. A phase I trial of the selective oral cyclin-dependent kinase inhibitor seliciclib (CYC202; R-Roscovitine), administered twice daily for 7 days every 21 days. Br J Cancer. 2007;96(1):29–37.
  • Le Tourneau C, Faivre S, Laurence V, et al. Phase I evaluation of seliciclib (R-roscovitine), a novel oral cyclin-dependent kinase inhibitor, in patients with advanced malignancies. Eur J Cancer. 2010;46(18):3243–3250.
  • ClinicalTrials.gov [Internet]. Treatment of Cushing’s disease with R-roscovitine. ClinicalTrials.gov. [cited 2015 Feb 25]. Available from https:/www.clinicaltrials.gov/ct2/show/NCT02160730
  • Riebold M, Kozany C, Freiburger L, et al. A C-terminal HSP90 inhibitor restores glucocorticoid sensitivity and relieves a mouse allograft model of Cushing disease. Nat Med. 2015 Mar;21(3):276-280. doi:10.1038/nm.3776. Epub 2015 Feb 9.
  • Saller R, Meier R, Brignoli R. The use of silymarin in the treatment of liver diseases. Drugs. 2001;61(14):2035–2063.
  • Pozza C, Graziadio C, Giannetta E, et al. Management strategies for aggressive Cushing’s syndrome: from macroadenomas to ectopics. J Oncol. 2012;2012:685213.
  • Mohammed S, Kovacs K, Mason W, et al. Use of temozolomide in aggressive pituitary tumors: case report. Neurosurgery. 2009;64(4):E773–E774; discussion E774.
  • Raverot G, Sturm N, de Fraipont F, et al. Temozolomide treatment in aggressive pituitary tumors and pituitary carcinomas: a French multicenter experience. J Clin Endocrinol Metab. 2010;95:4592–4599.
  • Dillard TH, Gultekin SH, Delashaw JB Jr, et al. Temozolomide for corticotroph pituitary adenomas refractory to standard therapy. Pituitary. 2011;14(1):80–91.
  • Losa M, Bogazzi F, Cannavó S, et al. Temozolomide therapy in patients with aggressive pituitary adenomas or carcinomas. J Neurooncol. 2016;126(3):519–525.
  • McCormack AI, Wass JA, Grossman AB. Aggressive pituitary tumours: the role of temozolomide and the assessment of MGMT status. Eur J Clin Invest. 2011;41(10):1133–1148.
  • Annamalai AK, Dean AF, Kandasami N, et al. Temozolomide responsiveness in aggressive corticotroph tumours: a case report and review of the literature. Pituitary. 2012;15(3):276–287.