885
Views
40
CrossRef citations to date
0
Altmetric
Review

Beta-secretase inhibitors in phase I and phase II clinical trials for Alzheimer’s disease

Pages 1131-1136 | Received 04 May 2017, Accepted 16 Aug 2017, Published online: 23 Aug 2017

References

  • Vassar R, Bennett BD, Babu-Khan S, et al. Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science. 1999 Oct 22;286(5440):735–741.
  • Willem M, Garratt AN, Novak B, et al. Control of peripheral nerve myelination by the beta-secretase BACE1. Science. 2006 Oct 27;314(5799):664–666.
  • Yan R, Bienkowski MJ, Shuck ME, et al. Membrane-anchored aspartyl protease with Alzheimer’s disease beta-secretase activity. Nature. 1999 Dec 02;402(6761):533–537.
  • Jonsson T, Atwal JK, Steinberg S, et al. A mutation in APP protects against Alzheimer’s disease and age-related cognitive decline. Nature. 2012 Aug 02;488(7409):96–99.
  • Sinha S, Anderson JP, Barbour R, et al. Purification and cloning of amyloid precursor protein beta-secretase from human brain. Nature. 1999 Dec 02;402(6761):537–540.
  • Hussain I, Powell D, Howlett DR, et al. Identification of a novel aspartic protease (Asp 2) as beta-secretase. Mol Cell Neurosci. 1999 Dec;14(6):419–427.
  • Lin X, Koelsch G, Wu S, et al. Human aspartic protease memapsin 2 cleaves the beta-secretase site of beta-amyloid precursor protein. Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1456–1460.
  • Walker LC, Rosen RF. Alzheimer therapeutics-what after the cholinesterase inhibitors? Age Ageing. 2006 Jul;35(4):332–335.
  • May PC, Dean RA, Lowe SL, et al. Robust central reduction of amyloid-beta in humans with an orally available, non-peptidic beta-secretase inhibitor. J Neurosci. 2011 Nov 16;31(46):16507–16516.
  • May PC, Willis BA, Lowe SL, et al. The potent BACE1 inhibitor LY2886721 elicits robust central Abeta pharmacodynamic responses in mice, dogs, and humans. J Neurosci. 2015 Jan 21;35(3):1199–1210.
  • Kennedy ME, Stamford AW, Chen X, et al. The BACE1 inhibitor verubecestat (MK-8931) reduces CNS beta-amyloid in animal models and in Alzheimer’s disease patients. Sci Transl Med. 2016 Nov 02;8(363):363ra150.
  • Kopan R, Ilagan MX. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell. 2009 Apr 17;137(2):216–233.
  • Hong L, Koelsch G, Lin X, et al. Structure of the protease domain of memapsin 2 (beta-secretase) complexed with inhibitor. Science. 2000 Oct 06;290(5489):150–153.
  • Evin G, Lessene G, Wilkins S. BACE inhibitors as potential drugs for the treatment of Alzheimer’s disease: focus on bioactivity. Recent Pat CNS Drug Discov. 2011 May 01;6(2):91–106.
  • Marques F, Sousa JC, Sousa N, et al. Blood-brain-barriers in aging and in Alzheimer’s disease. Mol Neurodegener. 2013 Oct;22(8):38.
  • Probst G, Xu YZ. Small-molecule BACE1 inhibitors: a patent literature review (2006-2011). Expert Opin Ther Pat. 2012 May;22(5):511–540.
  • Kandalepas PC, Vassar R. The normal and pathologic roles of the Alzheimer’s beta-secretase, BACE1. Curr Alzheimer Res. 2014;11(5):441–449.
  • Vassar R. BACE1 inhibitor drugs in clinical trials for Alzheimer’s disease. Alzheimers Res Ther. 2014;6(9):89.
  • Kandalepas PC, Sadleir KR, Eimer WA, et al. The Alzheimer’s beta-secretase BACE1 localizes to normal presynaptic terminals and to dystrophic presynaptic terminals surrounding amyloid plaques. Acta Neuropathol. 2013 Sep;126(3):329–352.
  • Deng M, He W, Tan Y, et al. Increased expression of reticulon 3 in neurons leads to reduced axonal transport of beta site amyloid precursor protein-cleaving enzyme 1. J Biol Chem. 2013 Oct 18;288(42):30236–30245.
  • Laird FM, Cai H, Savonenko AV, et al. BACE1, a major determinant of selective vulnerability of the brain to amyloid-beta amyloidogenesis, is essential for cognitive, emotional, and synaptic functions. J Neurosci. 2005 Dec 14;25(50):11693–11709.
  • Ohno M, Sametsky EA, Younkin LH, et al. BACE1 deficiency rescues memory deficits and cholinergic dysfunction in a mouse model of Alzheimer’s disease. Neuron. 2004 Jan 08;41(1):27–33.
  • Luo Y, Bolon B, Damore MA, et al. BACE1 (beta-secretase) knockout mice do not acquire compensatory gene expression changes or develop neural lesions over time. Neurobiol Dis. 2003 Oct;14(1):81–88.
  • Ohno M, Cole SL, Yasvoina M, et al. BACE1 gene deletion prevents neuron loss and memory deficits in 5XFAD APP/PS1 transgenic mice. Neurobiol Dis. 2007 Apr;26(1):134–145.
  • McConlogue L, Buttini M, Anderson JP, et al. Partial reduction of BACE1 has dramatic effects on Alzheimer plaque and synaptic pathology in APP transgenic mice. J Biol Chem. 2007 Sep 07;282(36):26326–26334.
  • Rajapaksha TW, Eimer WA, Bozza TC, et al. The Alzheimer’s beta-secretase enzyme BACE1 is required for accurate axon guidance of olfactory sensory neurons and normal glomerulus formation in the olfactory bulb. Mol Neurodegener. 2011 Dec 28;6:88.
  • Cao L, Rickenbacher GT, Rodriguez S, et al. The precision of axon targeting of mouse olfactory sensory neurons requires the BACE1 protease. Sci Rep. 2012;2:231.
  • Hitt B, Riordan SM, Kukreja L, et al. Beta-Site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1)-deficient mice exhibit a close homolog of L1 (CHL1) loss-of-function phenotype involving axon guidance defects. J Biol Chem. 2012 Nov 09;287(46):38408–38425.
  • Hu X, Hicks CW, He W, et al. Bace1 modulates myelination in the central and peripheral nervous system. Nat Neurosci. 2006 Dec;9(12):1520–1525.
  • Hu X, He W, Diaconu C, et al. Genetic deletion of BACE1 in mice affects remyelination of sciatic nerves. Faseb J. 2008 Aug;22(8):2970–2980.
  • Kobayashi D, Zeller M, Cole T, et al. BACE1 gene deletion: impact on behavioral function in a model of Alzheimer’s disease. Neurobiol Aging. 2008 Jun;29(6):861–873.
  • Ohno M, Chang L, Tseng W, et al. Temporal memory deficits in Alzheimer’s mouse models: rescue by genetic deletion of BACE1. Eur J Neurosci. 2006 Jan;23(1):251–260.
  • Cheret C, Willem M, Fricker FR, et al. Bace1 and Neuregulin-1 cooperate to control formation and maintenance of muscle spindles. Embo J. 2013 Jul 17;32(14):2015–2028.
  • Harrison SM, Harper AJ, Hawkins J, et al. BACE1 (beta-secretase) transgenic and knockout mice: identification of neurochemical deficits and behavioral changes. Mol Cell Neurosci. 2003 Nov;24(3):646–655.
  • Hu X, He W, Luo X, et al. BACE1 regulates hippocampal astrogenesis via the Jagged1-Notch pathway. Cell Rep. 2013 Jul 11;4(1):40–49.
  • Hu X, Zhou X, He W, et al. BACE1 deficiency causes altered neuronal activity and neurodegeneration. J Neurosci. 2010 Jun 30;30(26):8819–8829.
  • Savonenko AV, Melnikova T, Laird FM, et al. Alteration of BACE1-dependent NRG1/ErbB4 signaling and schizophrenia-like phenotypes in BACE1-null mice. Proc Natl Acad Sci U S A. 2008 Apr 08;105(14):5585–5590.
  • Cai J, Qi X, Kociok N, et al. Beta-Secretase (BACE1) inhibition causes retinal pathology by vascular dysregulation and accumulation of age pigment. EMBO Mol Med. 2012 Sep;4(9):980–991.
  • Hitt BD, Jaramillo TC, Chetkovich DM, et al. BACE1-/- mice exhibit seizure activity that does not correlate with sodium channel level or axonal localization. Mol Neurodegener. 2010 Aug 23;5:31.
  • Tanzi RE. The genetics of Alzheimer disease. Cold Spring Harb Perspect Med. 2012 Oct 01;2(10).
  • Chami L, Checler F. BACE1 is at the crossroad of a toxic vicious cycle involving cellular stress and beta-amyloid production in Alzheimer’s disease. Mol Neurodegener. 2012 Oct 05;7:52.
  • Zhao Y, Wang Y, Yang J, et al. Sorting nexin 12 interacts with BACE1 and regulates BACE1-mediated APP processing. Mol Neurodegener. 2012 Jun 18;7:30.
  • Rossner S, Sastre M, Bourne K, et al. Transcriptional and translational regulation of BACE1 expression–implications for Alzheimer’s disease. Prog Neurobiol. 2006 Jun;79(2):95–111.
  • Sun X, He G, Qing H, et al. Hypoxia facilitates Alzheimer’s disease pathogenesis by up-regulating BACE1 gene expression. Proc Natl Acad Sci U S A. 2006 Dec 05;103(49):18727–18732.
  • Zhang X, Zhou K, Wang R, et al. Hypoxia-inducible factor 1alpha (HIF-1alpha)-mediated hypoxia increases BACE1 expression and beta-amyloid generation. J Biol Chem. 2007 Apr 13;282(15):10873–10880.
  • Sadleir KR, Vassar R. Cdk5 protein inhibition and Abeta42 increase BACE1 protein level in primary neurons by a post-transcriptional mechanism: implications of CDK5 as a therapeutic target for Alzheimer disease. J Biol Chem. 2012 Mar 02;287(10):7224–7235.
  • Sadleir KR, Eimer WA, Kaufman RJ, et al. Genetic inhibition of phosphorylation of the translation initiation factor eIF2alpha does not block Abeta-dependent elevation of BACE1 and APP levels or reduce amyloid pathology in a mouse model of Alzheimer’s disease. PloS One. 2014;9(7):e101643.
  • Arbel M, Yacoby I, Solomon B. Inhibition of amyloid precursor protein processing by beta-secretase through site-directed antibodies. Proc Natl Acad Sci U S A. 2005 May 24;102(21):7718–7723.
  • Boddapati S, Levites Y, Sierks MR. Inhibiting beta-secretase activity in Alzheimer’s disease cell models with single-chain antibodies specifically targeting APP. J Mol Biol. 2011 Jan 14;405(2):436–447.
  • Rabinovich-Nikitin I, Rakover IS, Becker M, et al. Beneficial effect of antibodies against beta- secretase cleavage site of APP on Alzheimer’s-like pathology in triple-transgenic mice. PloS One. 2012;7(10):e46650.
  • Atwal JK, Chen Y, Chiu C, et al. A therapeutic antibody targeting BACE1 inhibits amyloid-beta production in vivo. Sci Transl Med. 2011 May 25;3(84):84ra43.
  • Zhou L, Chavez-Gutierrez L, Bockstael K, et al. Inhibition of beta-secretase in vivo via antibody binding to unique loops (D and F) of BACE1. J Biol Chem. 2011 Mar 11;286(10):8677–8687.
  • Balasubramanian AB, Kawas CH, Peltz CB, et al. Alzheimer disease pathology and longitudinal cognitive performance in the oldest-old with no dementia. Neurology. 2012 Aug 28; 79(9):915–921.
  • Kawas CH, Greenia DE, Bullain SS, et al. Amyloid imaging and cognitive decline in nondemented oldest-old: the 90+ Study. Alzheimers Dement. 2013 Mar;9(2):199–203.
  • Alzheimer disease: comparable brain levels of amyloid-beta and tau in asymptomatic AD and mild cognitive impairment. Nat Rev Neurol. 2014 Mar 25. doi:10.1038/nrneurol.2014.52
  • Sevigny J, Chiao P, Bussiere T, et al. The antibody aducanumab reduces Abeta plaques in Alzheimer’s disease. Nature. 2016 Sep 01;537(7618):50–56.
  • Gotz J, Chen F, Van Dorpe J, et al. Formation of neurofibrillary tangles in P301l tau transgenic mice induced by Abeta 42 fibrils. Science. 2001 Aug 24;293(5534):1491–1495.
  • King ME, Kan HM, Baas PW, et al. Tau-dependent microtubule disassembly initiated by prefibrillar beta-amyloid. J Cell Biol. 2006 Nov 20;175(4):541–546.
  • Roberson ED, Scearce-Levie K, Palop JJ, et al. Reducing endogenous tau ameliorates amyloid beta-induced deficits in an Alzheimer’s disease mouse model. Science. 2007 May 4;316(5825):750–754.
  • Vossel KA, Zhang K, Brodbeck J, et al. Tau reduction prevents Abeta-induced defects in axonal transport. Science. 2010 Oct 8;330(6001):198.
  • See TM, LaMarre AK, Lee SE, et al. Genetic causes of frontotemporal degeneration. J Geriatr Psychiatry Neurol. 2010 Dec;23(4):260–268.
  • Short RA, Graff-Radford NR, Adamson J, et al. Differences in tau and apolipoprotein E polymorphism frequencies in sporadic frontotemporal lobar degeneration syndromes. Arch Neurol. 2002 Apr;59(4):611–615.
  • Giannakopoulos P, Herrmann FR, Bussiere T, et al. Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease. Neurology. 2003 May 13;60(9):1495–1500.
  • Jack CR Jr., Wiste HJ, Weigand SD, et al. Age-specific and sex-specific prevalence of cerebral beta-amyloidosis, tauopathy, and neurodegeneration in cognitively unimpaired individuals aged 50-95 years: a cross-sectional study. Lancet Neurol. 2017 Jun;16(6):435-444. doi:10.1016/S1474-4422(17)30077-7.
  • White CC, Yang HS, Yu L, et al. Identification of genes associated with dissociation of cognitive performance and neuropathological burden: multistep analysis of genetic, epigenetic, and transcriptional data. PLoS Med. 2017 Apr;14(4):e1002287.
  • Ethell DW. An amyloid-notch hypothesis for Alzheimer’s disease. Neuroscientist. 2010 Dec;16(6):614–617.
  • Robinson JL, Geser F, Corrada MM, et al. Neocortical and hippocampal amyloid-beta and tau measures associate with dementia in the oldest-old. Brain. 2011 Dec;134(Pt 12):3708–3715.
  • Rebeck GW, Hoe HS, Moussa CE. Beta-amyloid1-42 gene transfer model exhibits intraneuronal amyloid, gliosis, tau phosphorylation, and neuronal loss. J Biol Chem. 2010 Mar 5;285(10):7440–7446.
  • Lonskaya I, Hebron M, Chen W, et al. Tau deletion impairs intracellular beta-amyloid-42 clearance and leads to more extracellular plaque deposition in gene transfer models. Mol Neurodegener. 2014 Nov 10;9:46.
  • Jack CR Jr. Alzheimer disease: new concepts on its neurobiology and the clinical role imaging will play. Radiology. 2012 May;263(2):344–361.
  • Musiek ES, Holtzman DM. Origins of Alzheimer’s disease: reconciling cerebrospinal fluid biomarker and neuropathology data regarding the temporal sequence of amyloid-beta and tau involvement. Curr Opin Neurol. 2012 Dec;25(6):715–720.
  • Holtzman DM, Morris JC, Goate AM. Alzheimer’s disease: the challenge of the second century. Sci Transl Med. 2011 Apr 06;3(77):77sr1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.